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Abstract

In this work, we introduce a general framework for analysis and optimization of adaptive trans-

mission systems in information-unstable channels. In information-unstable channels, the information

density does not converge to a one-point measure and the maximum achievable transmission rate is seen

as a random variable because it depends on the actual channel state. For that reason, instead of con-

ventional channel capacity, we propose to use new performance indicators such as expected utility and

riskiness that are commonly used to order probability density functions in axiomatic decision theory. We

show the analogies between decision-theoretic problems and information-theoretic problems in adaptive

transmission systems. We present different single-user, multi-user, and multi-terminal communication

scenarios and map them to various rationality concepts and uncertainty models in decision theory. To the

author’s best knowledge, adaptive transmission systems and networks have not been yet analyzed within

the framework of rational decision theory.

Distribution A:  Approved for public release; distribution is unlimited.
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1 Introduction

The fundamental problem of telecommunication is that of efficiently encoding an information message,

transmitting it over a communication channel, and decoding it at destination point with respect to a

predefined fidelity criterion [35]. To process and transmit a given amount of information the commu-

nication system uses up available system resources: energy, frequency, time, and space. Furthermore,

the transmission of messages over communication channels is subject to various practical constraints,

for example, average or peak limitation of transmission power, available frequency bandwidth, available

computing power, maximum allowable delays in encoding and decoding, and complexity of encoding-

decoding scheme. Considerations of delays and complexity of encoding-decoding scheme specify the

maximum length of codewords to be used in a given communication system, which in turn determines

a trade-off between transmission power, transmission rate, and probability of decoding error. The com-

munication system accomplishes efficient and reliable transmission if it uses as little system resources

as possible to reproduce information at destination point within the prescribed fidelity criterion.

Ad hoc communication systems without any infrastructure have been interesting in many military

applications. In commercial applications there is presently a high interest also in wireless mesh and relay

networks, which are an intermediate between conventional cellular networks and ad hoc networks. Mesh

and relay networks are more cost-effective and they have better performance than ad hoc networks. In

addition, there are new generalized adaptive radios called cognitive radios that are based on ambient

intelligence using different sensors to estimate the status of the environment and making intelligent deci-

sions, usually to improve the performance of the network. The design of an efficient and reliable wireless

communication network, which additionally operates under stringent delay constraints, poses significant

engineering challenges. The main difficulties are the result of an underlying wireless radio channel which

can be characterized by path loss, random composite shadowing and multipath fading, and interference.

The wireless channel makes the design of wireless communication systems extremely difficult because

the aforementioned channel impediments change over time in an unpredictable way. Adaptive transmis-

sion is currently considered a very promising method to cope with time-varying effects and improve

transmission reliability. In adaptive transmission systems, transmitter adjusts the transmission parame-

ters, for example transmission power, transmission rate, coding scheme, or any combination of those,

to the actual state of communication channel in a way that the fidelity criterion is eventually satisfied.

The adaptive control rule that governs the selection of transmission parameters with respect to various

transmission constraints is usually called adaptive transmission strategy.

Information theory, by assigning a numerical measure to the information content of messages and re-

lating various system resources through the expression of transmission rate, provides an excellent starting

point for discovering methods to design efficient and reliable communication systems as well as optimal

adaptive transmission strategies. However, variability of random fading process during transmission of

a finite-length codeword leads to different information-theoretic models of the wireless communication

channel and consequently different notions of the reliable transmission rate [5, 24]. For example, if the

stochastic process which represents random fading is stationary and ergodic and the length of the code-

word is sufficiently large as to reveal ergodic properties of the channel, the channel is information-stable.

Consequently, the normalized information density converges in distribution to a constant which equals

the normalized mutual information [38]. The supremum of the normalized mutual information is the

Shannon capacity, that is, the maximum transmission rate for which error-free transmission is still pos-

sible. However, wireless communication channels are usually not information-stable channels because

either the random fading process is not stationary or ergodic or the length of codeword is not sufficiently

large as to reveal ergodic properties of the channel. As a consequence, the normalized information den-

sity does not converge in distribution to a single point and the Shannon capacity equals the infimum of

the support set of the distribution of normalized information density [38]. In a multi-user environment

Distribution A:  Approved for public release; distribution is unlimited.
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the channel is no longer characterized by a single parameter but by a set of parameters being the achiev-

able transmission rates of all users. The set of achievable transmission rates is called capacity region.

Depending on the transmission scenario certain capacity notions arise: multiple-access channel in uplink

transmission, broadcast channel in downlink transmission, and interference channel in a simultaneous

multi-terminal transmission.

Strict adherence to classical Shannon-sense capacity may lead to overpessimistic conclusions. In

many practical systems, transmission of useful information does not require error-free communication

because these systems can easily incorporate and cope with errors, outages, delays, high level distor-

tions coming not in a stationary fashion, and the like. These practical considerations give rise to other

information-theoretic notions of channel capacity such as distribution of capacity and zero-outage capac-

ity where the instantaneous rate of reliable transmission is considered a random variable which depends

on the actual realization of the fading process [5]. The probabilistic description of the rate of reliable

transmission that can be supported by the communication channel represents an uncertainty on what its

value could be during transmission. In adaptive systems, the distribution of reliable transmission rates

depends not only on the statistical properties of the channel but also on the selection of adaptive transmis-

sion strategy. Consequently, a fair comparison of various transmission strategies as well as identification

of the best strategy is problematic. It is because the subject of comparison is no longer a set of real

numbers, as in the case of Shannon capacity, but the space of probability distributions. Numerous stud-

ies on the adaptive transmission in information-unstable channels, for example block-fading channels,

have been conducted using expected value of mutual information or information outage probability as

relevant performance indicators [5]. The information outage probability is defined as the probability that

the instantaneous mutual information of the channel is below the transmitted code rate [5]. However,

it is unknown whether these performance indicators, although intuitively pleasing, are indeed optimal

ones because they are usually introduced without rigorous justification. The question we address in this

study is how to compare different adaptive transmission strategies which can be used for transmission in

information-unstable channels. In particular, what are appropriate performance indicators which objec-

tively and meaningfully describe the performance of adaptive systems in information-unstable channels?

2 Methods, Assumptions, and Procedures

The purpose of this study is to establish a unified framework for analysis and optimization of adaptive

transmission systems in information-unstable channels; a framework which takes into account an in-

herent uncertainty about the channel state during transmission and, consequently, the statistical nature

of instantaneous rate of reliable transmission. The determination of the best choice among several al-

ternatives, each of which leads to certain or uncertain consequences, is the subject of theory of rational

decision-making. Therefore, we fit various information-theoretic models of wireless communication sys-

tems to a classification of decision-making problems in decision theory. Furthermore, we apply methods

and mathematical tools of rational decision theory to construct the relevant performance indicators and

order the distributions of reliable transmission rate together with the corresponding adaptive transmis-

sion strategies. Construction of the relevant performance indicators inevitably leads to a definition of

some measure associated with the probability distribution, axiomatization of measurement procedure,

and derivation of representation and uniqueness theorems which define homomorphisms between space

of probability distributions and the set of real numbers. Consequently, with the help of representation

theorem, probability distributions can be ordered in a way similar to real numbers. The set of axioms to

be used in measurement provides a logically sound justification for selection of a given measure as the

performance indicator and ensures that determination of the best adaptive transmission strategy is done

rationally.

We define and solve the problem of finding appropriate performance indicators in information-

Distribution A:  Approved for public release; distribution is unlimited.
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unstable channels within the framework of theory of rational decision-making. We focus exclusively

on normative theories of rational decision-making which describe how agent should behave in order to

be rational. Descriptive theories, on the other hand, analyze how human beings actually make decisions

which sometimes could be considered irrational. Normative theories of rational decision-making can be

roughly divided into three categories depending on the number of rational agents present in a considered

scenario. We study various models of individual rationality (single-agent behavior), strategic rationality

(small-group behavior), and competitive rationality (large-group behavior). Furthermore, we review and

analyze different models of rational decision-making. In particular, we present the models of rational

decision-making under certainty, risk, uncertainty, and ignorance [11, 22]. The classification of these

models is based on the presumed level of knowledge about distribution of states of nature. For example,

under complete probabilistic knowledge about distribution of states of nature, the decision is made under

risk. Similarly, decision-making under uncertainty and ignorance is performed under assumptions of par-

tial probabilistic knowledge and complete lack of probabilistic knowledge about distribution of states of

nature, respectively. Decision-making under certainty is the most trivial decision-making problem where

each action is known to lead invariably to a specific consequence. Consequently, a classical Shannon’s

theory can be used.

The models of individual rationality include ordinal utility (for choice under conditions of certainty),

expected utility (for choice under conditions of risk, where probabilities for events are objectively de-

termined), subjective expected utility and state-preference theory (for choice under conditions of uncer-

tainty, where probabilities for events are subjectively determined or perhaps undetermined), and several

kinds of nonexpected utility theory (in which total utility is not representable as a sum of utilities asso-

ciated with disjoint events). Models of strategic rationality include a wide spectrum of different equilib-

rium concepts of game theory. Finally, models of competitive rationality include the general equilibrium

model and particular forms of it that are used in capital asset pricing theory in finance. Figure 1 shows a

rough taxonomy of these theories.

To order different probability distributions objectively, we define suitable fundamental measurement

procedures [21]. For every possible class of decision-making problems, we will present a set of measure-

ment axioms and propose corresponding representation and uniqueness theorems. Representation theo-

rems define homomorphism between space of probability distributions and the set of real numbers [21, p.

12]. Uniqueness theorems, on the other hand, set forth permissible transformations that also yield homo-

morphisms into the same set of real numbers [21, p. 12]. Consequently, the probability distributions can

be compared as easily as real numbers. In particular, we use two complementary measurement theories

which are widely used in economics: risk theory [31] and utility theory [8, 30].

In utility theory, the order of probability distributions is established by comparing the expected util-

ity associated with respective probability distributions. Utility functions are typically either linear or

concave continuously differentiable functions [11, 22]. The use of linear and concave utility functions

in telecommunication scenarios can be justified using results from rate-distortion theory. Furthermore,

there are simplified decision-making models, for example, mean-risk [3], stochastic dominance [25],

and safety-first models [16,32], that provide orderings of probability distributions compatible with those

obtained by comparing expected utilities. We emphasize mean-risk models because they are commonly

used in practical applications of expected utility theory, e.g. portfolio theory [27].

The notion of risk is applied in economics as a property of uncertain options, or lotteries, which

affects decision making. In risk theory, the order of probability distributions is established by comparing

the riskiness associated with respective probability distributions. In this case, the relevant performance

indicator could be any of the coherent risk measures, that is, risk measures which satisfy axioms of risk

measurement [2].

In decision theory, and especially in mean-risk models, the term “efficiency” receives a new meaning.

Namely, efficiency refers to the optimal trade-off between mean performance and risk associated with a

Distribution A:  Approved for public release; distribution is unlimited.
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given mean performance. The optimal combinations of mean performance and risk are called efficient

combinations [27, pp. 22–26]. The efficient frontier is the fundamental limit of the mean-risk perfor-

mance because no other scheme can be constructed that achieves the performance above the efficient

frontier. We study how to construct adaptive transmission schemes that achieve the optimal trade-off

between average transmission rate and the risk associated with that particular transmission rate. In other

words, we study how to determine efficient frontier of mean-risk transmission rate and how to design

an adaptive system that achieves mean-risk performance on the efficient frontier. The mean-risk per-

formance of various state-of-the-art adaptive transmission schemes will be studied as well. Our initial

results are summarized in [19, 20]. The results in [19, 20] were derived for modulation schemes with

Gaussian inputs, that is, modulation with infinite granularity. We plan to take a more practical approach,

where we assume that transmitter uses a finite QAM modulation schemes.

One of the fundamental assumptions in game theory and asset pricing theory is rational behavior

of agents. Therefore, our initial focus in this study is determination of rational behavior in all possible

single-user scenarios. We start from idealized situation of choice under risk to find the fundamental per-

formance limits and then turn to more practical situation when agents act under uncertainty. Next, we

extend the results to include multi-user and multi-terminal scenarios. We will use game-theoretic ap-

proach to predict the performance of multi-user communication and various capital asset pricing models

(CAPM) to assess the performance of possibly large multi-terminal networks. We plan to implement

and verify the performance of different adaptive strategies developed for single-user scenarios using

numerous game-theoretic and capital asset pricing models in our software demonstrator.

3 Channel Model

We consider a discrete-time linear vector channel with t inputs and r outputs. Let y ∈ Ct denote a vector

of complex input symbols and z ∈ Cr be a vector of complex output symbols. The output z and input y

symbols are related by the matrix equation

zk = Hkyk + nk, k = 1, . . . , K (1)

where k denotes a discrete-time index, K denotes the length of the codewrod, and n ∈ Cr is a vector of

complex white Gaussian noise samples with zero mean and variance σ2
n. Complex channel coefficients

hij that describe radio propagation conditions between ith input and jth output are assembled into the

r× t channel matrix H = [hij]
r,t
i,j=1.

The channel model given by (1) is very general and applies to several situation arising in wireless

communications, depending on the definition of the channel matrix H [18]. For example,

1. Frequency-nonselective fading channel — Hk is a random scalar

2. Frequency-selective time-invariant channel — Hk is a fixed Toeplitz matrix

3. Frequency-selective block-fading channel — Hk is a random Toeplitz matrix

4. Frequency-nonselective fading channel with multiple antennas — Hk is a random matrix

5. Frequency-selective block-fading channel with multiple antennas — Hk is a random block-

Toeplitz matrix

A frequency-selective fading can be modeled by (1) provided that the channel memory is finite. The

channel matrix Hk is then a convolution matrix with Toeplitz or block-Toeplitz structure.

In practice, wireless systems are designed under very coarse assumptions on the channel model. For

example, only the maximum values of Doppler frequency spread Fmax and delay spread τmax are assumed

to be known. Furthermore, the distribution of the entries of Hk is assumed to belong to some class of

possible statistics, for example, the entries of Hk are jointly Gaussian. Another common assumption

is that the entries of the channel matrix H evolve in time as wide-sense stationary complex processes,

Distribution A:  Approved for public release; distribution is unlimited.
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and that coefficients at different delays in frequency-selective channels are uncorrelated. This model is

commonly referred as to wide-sense stationary uncorrelated scattering (WSSUS) fading channel. The

number of complex dimensions for which the fading channel can be considered as locally time-invariant

is approximately given by the product of the channel coherence bandwidth Wc and the channel coherence

time Tc. These are inversely proportional to the channel delay spread τmax and the channel Doppler band-

width Fmax, respectively. In modern wireless/mobile communications the product WcTc ranges between

100 and several thousands. We refer to such a fading channel as block-fading channel. The block-fading

approximation is accurate at least in the range of spectral efficiencies of practical interest, typically rang-

ing between 1/2 and 6 bit/s/Hz [23].

The block-fading regime enables channel estimation schemes based on training sequences. For each

block of symbols over which the channel is locally time-invariant, the transmitter sends a pilot signal

that enables the receiver to produce an estimate of the channel response. Explicit training is used by

virtually all modern wireless/mobile communication systems, and it is ubiquitous in the next generation

of wireless standards. The main factor motivating explicit training is simplicity: indeed, schemes that

avoid explicit training are generally either suboptimal (e.g., schemes based on noncoherent/differential

symbol by symbol detection) or require very high complexity, both in terms of receiver algorithms and

in terms of coding and modulation design. Hence, the assumption of perfect channel state information at

the receiver is well justified.

Most of wireless/mobile communication systems carry communications in two directions: from the

base station to the user terminals and from the user terminals to the base station. This bidirectional com-

munication can be used to provide channel state information also to the transmitter, either implicitly

(“open-loop”) or explicitly (“closed-loop”). Open loop schemes are based on measuring the channel pa-

rameters in one direction based on training symbols in the reverse direction. If transmission directions are

multiplexed in time, and provided that the terminal radio frequency (RF) up and down conversion chains

are calibrated so that their gain are known, the radio channel reciprocity can be exploited to achieve very

accurate amplitude information on the channel coefficients at the transmitter. When reciprocity cannot

be exploited, open-loop schemes can only provide coarse information such as average received signal

strength. Then, closed-loop schemes must be used, where the channel at the receiver end is estimated,

and some information is sent back via a feedback channel. Generally speaking, we may assume that

the channel state information at the transmitter is represented by the signal {Gk : k = 1, . . . ,K} where

{Hk,Gk} are jointly distributed according to some known probability law and the {Gk} signal is re-

vealed to the transmitter in a causal way, i.e., when producing the input yk the transmitter knows the

sequence {G1, . . . ,Gk}.

Let us assume that both the transmitter and the receiver include additional linear transformations to

diagonalize the channel matrix Hk. In particular, let Hk = U kDkV
∗
k where U k is an r × r unitary

matrix, the matrix Dk = [dij] is r× t diagonal matrix with nonnegative real numbers on the diagonal,

and V ∗ denotes the conjugate transpose of V k, a t× t unitary matrix. For example, in OFDM systems

the matrices V k and U k are Fourier matrices which diagonalize a circulant or block-circulant matrix

Hk [18]. In multi-antenna systems, theses unitary matrices are beamforming matrices that send the

signal through the best channel eigenmodes [18]. We assume, therefore, that the channel input symbols

y are the result of the linear transformation

yk = V kQkxk (2)

where Qk is a t× t power control matrix and x ∈ Ct is a vector of complex channel encoder symbols.

Similarly, the receiver applies a linear transformation

z̃k = U ∗
kzk (3)

Distribution A:  Approved for public release; distribution is unlimited.
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to the channel output symbols zk. By combining (1), (2), and (3), we obtain

z̃k = Dkx̃k + ñk (4)

where x̃k =Qkxk and ñk = U∗

k
nk. From (4), we conclude that with additional unitary transformation

in the transmitter and the receiver, the linear vector channel is transformed into a set of m = min(r, t)
parallel Gaussian subchannels.

Let λi = d2
ii, where 1 ≤ i ≤ m, denote the instantaneous energy gain of the ith subchannel and

qi = |x̃i|2 be the corresponding instantaneous transmitted energy. In most of the theoretical fading mod-

els, including Rayleigh, Nakagami, and log-normal fading models, the subchannel energy gains λi are

unbounded [5]. Thus, we assume that λi are random variables with an arbitrary joint probability density

function p(λ1,λ2, . . . ,λm) defined on the nonnegative orthant of m-dimensional Euclidean space Rm.

Furthermore, let both the representative energy gain of the channel [18]

G0 =
1

t
E
[∑m

i=1
λi

]

=
1

t

∑m

i=1

∫ ∞

0

λip(λi) dλi (5)

and the average transmitted energy

Eav = E
[∑m

i=1
qi

]

=
∑m

i=1

∫ ∞

0

qip(qi) dqi (6)

be finite. The marginal probability density functions of λi and qi are denoted by p(λi) and p(qi) in (5)

and (6), respectively.

The instantaneous link spectral efficiency of the transmission over a multi-antenna fading channel is

a random variable which can be expressed as the function of m = min(t, r) positive eigenvalues of the

Wishart matrix W k =HkH
∗
k [36]. The value of the ith eigenvalue λi represents the energy gain of the

ith subchannel associated with the ith eigenvalue. We denote the transmission power allocated to the kth

channel by qi. Then, the instantaneous link spectral efficiency ηr is [36]

ηr(λ, q) =
∑m

i=1
log2

(
1 + qiλi/σ

2
n

)
(7)

where we have used vector notation λ = (λ1, . . . ,λm) and q = (q1, . . . , qm) for simplicity. The average

power constraint, on the other hand, becomes [36]

µq(λ, q) = E
[∑m

i=1
qi

]

≤ Pav. (8)

Let the region Q⊂ Rm
+ be defined by

Q =
{
λ ∈ Rm

+ : λ1 ≥ λ2 ≥ · · · ≥ λm

}
. (9)

We can assume, without loss of generality, that λ ∈Q, i.e., the subchannel gains {λ1, . . . ,λm} in (7) and

(8) are sorted in the nonincreasing order. The assumption λ ∈Q does not restrict our analysis in any way

because the solution, which is obtained for λ ∈ Q, can be easily extended to include any λ /∈ Q [6]. In

particular, one can always sort the components of λ→ π(λ) in the nonincreasing order, find the optimal

power allocation vector q for the sorted vector π(λ), and apply the inverse permutation to the vector q,

i.e., q → π−1(q). Consequently, one can obtain the optimal solution for any λ ∈ Rm
+ by considering only

a restricted set of λ ∈Q.

The evaluation of (8) requires averaging over the joint distribution of ordered positive eigenvalues of

W which is given by [36]

p(λ) = c−1
∏m

i=1
λu−m
i e−λi

∏

j<i
(λi − λj)

2
(10)
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where u=max(t,r) and c is a normalization constant

c =
∏m

i=1
(u− i)! (m− i)!. (11)

It is shown in [6] that a Gaussian-like, fixed-rate code achieves optimal link spectral efficiency per-

formance where a state-dependent amplifier controls the power according to the optimal power control

strategy. Therefore, we exclusively focus on adaptive power control schemes.

4 Results and Discussion

4.1 Connections Between Decision Theory and Information Theory

The performance of adaptive transmission schemes in information-unstable channels is commonly de-

scribed by information outage probability or expected value of reliable transmission rate. However,

within the framework of decision theory the use of both performance criteria is at least questionable [2,4].

From descriptive point of view, expected value is a relevant performance measure if the experiment is

repeated infinitely many times under the same conditions. This is rather uncommon situation in practice

because complexity considerations set upper limit on the length of the codeword. Furthermore, one can

encounter paradoxes similar to the St. Petersburg paradox, which demonstrates that under some condi-

tions the use of expected value as the performance indicator leads to irrational choices [4]. The use of

information outage probability, although intuitively pleasing, has also many disadvantages. For example,

outage probability only gives the probability that an undesirable event occurs but gives no clues as to

how severe it could be. Many practical communication systems can easily cope with outages and inter-

mittent connectivity. Furthermore, adaptive transmission systems can reduce the actual transmission rate

during outage rather than suspend it completely. Thus, the use of information outage probability as the

relevant performance indicator may lead to overpessimistic conclusions. Furthermore, commonly used

performance indicators, that is, information outage probability and expected value of transmission rate,

are usually introduced without rigorous justification. The use of information outage probability as the

relevant performance indicator can be justified using the concept of ε-achievable capacity [38]. How-

ever, a serious limitation of this approach is the assumption of constant code rate. We will show that

outage probability is not in general coherent measure of risk and, as such, it should not be used as the

relevant performance indicator. Furthermore, we will demonstrate limitations of risk theory when ap-

plied to adaptive transmission in information-unstable channels. In particular, we will show that some

decision-making problems cannot be resolved within the framework of risk theory.

Numerous telecommunication scenarios can be easily fitted into a classification of decision theory.

For example, single adaptive links, as shown in Figure 2, can be considered within framework of individ-

ual rationality. Similarly, traditional multi-user communication, as shown in Figure 3 for multiple-access

channel, corresponds to strategic rationality. Finally, the performance of large multi-terminal networks

can be analyzed using concepts of competitive rationality. We say that the transmitter or receiver has

channel state information (CSI) and channel distribution information (CDI) available, when they have

information about instantaneous state of the channel and all information about distribution of of chan-

nel states, respectively. Taking into account different assumptions about availability of channel distri-

bution information and channel state information to the transmitter and receiver, we classify various

information-theoretic models of single-user, multi-user, and general multi-terminal wireless scenarios

within aforementioned models of decision-making problems. For example, the rational-decision making

under risk corresponds to idealized situation where the receiver and transmitter have perfect channel state

information and channel distribution information available. Rational-decision making under uncertainty

or ignorance describes a more realistic scenario where cognitive radio learns the statistical properties of
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Figure 1: Information-theoretic models of communication channels and uncertainty concepts.

the environment in which it operates. In other words, transmitter and receiver have only partial channel

state information available. Figure 4 shows connections between certain problems in decision theory and

information-theoretic models of communication.

4.2 Rational Decision-Making Under Risk

4.2.1 Expected Utility Hypothesis

Let C be a set of all possible outcomes of an experiment, that is, a sample space. Let P be a set of

all probability measures on C. The elements of P are commonly referred to as objects of preference.

Axioms of preference specify the behavior of a binary relation “is preferred to” ≻ on the set P of objects

of preference. Before we proceed to state the axioms of preference and representation theorem, we need

a few definitions.

Definition 1. A sigma-algebra F for C is a collection of subsets of C that contains C (C ∈ F), is closed

under complementation (A ∈ F ⇒ C\A ∈ F), and is closed under countable unions of its elements

(Ak ∈ F for k = 1,2, . . .⇒⋃∞

k=1Ak ∈ F).

Definition 2. Let M be the set of all open sets in C. The sigma-algebra generated by M, that is, the

smallest sigma-algebra that includes M, is called the Borel sigma-algebra for C and its elements Ak
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Figure 2: Model of a single-user communication.
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Figure 4: Rationality theories and associated uncertainty concepts.
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are called Borel sets.

Definition 3. A countably additive probability measure on an algebra F is a nonnegative real-valued

function P : F → [0,1] with P (∅) = 0, P (C) = 1, and

P
(⋃∞

k=1
Ak

)

=
∑∞

k=1
P (Ak) (12)

whenever {A1,A2, . . .} is a countable collection of pairwise disjoint elements in F .

Definition 4. A set P of probability measures on F is closed under finite convex combinations if and

only if αP +(1−α)Q ∈ P whenever P, Q ∈ P and 0< α < 1.

In order to define utilities of consequences in an unambiguous way, we assume that each singleton

subset {x} from C is in F and the corresponding one-point measure P ({x}) is in P . That is, if x ∈ C
and P ({x}) = 1 then P ({x}) ∈ P . Consequently, x ≻ y indicates that consequence x is preferred to

consequence y when P ({x}) =Q({y}) = 1. Similarly, x4 y means that consequence x is not preferred

to consequence y when P ({x}) =Q({y}) = 1.

Definition 5. A subset Z of C is a preference interval if z ∈ Z whenever x,y ∈ Z , x4 z, and z 4 y.

Z = {z ∈ C : x 4 z 4 y} (13)

Finally, to ensure that expected utilities are well defined, we require that P is also closed under

conditional measures on preference intervals. When all preference intervals are in F , the set P is closed

under conditional measures on preference intervals if for all Y ∈ F the conditional measure of p given Z ,

PZ (Y) = P (Y ∩Z)/P (Z), is in P whenever P ∈ P , Z is a preference interval from C, and P (Z)> 0.

We can now state a basic requirements that must be satisfied by our preference relation ≻ on the set

P of probability measures.

Axiom 1 (Measurability). The setF is a Borel sigma-algebra of subsets of C which contains the singleton

subset {x} for each x ∈ C and every preference interval Z from C. The set P is a set of countably additive

probability measures defined on F that contains every one-point measure, is closed under finite convex

combinations, and is closed under conditional measures on preference intervals.

Axiom 2 (Ordering). The binary relation ≻ on P is asymmetric P ≻ Q ⇒ ¬ (Q≻ P ) and negatively

transitive P ≻Q⇒ (R≻Q∨P ≻ R) for all P, Q, R ∈ P .

Axiom 3 (Independence). If P, Q, R ∈ P , P ≻ Q, and 0 < α < 1, then αP + (1−α)R ≻ αQ+
(1−α)R.

Axiom 4 (Continuity). If P, Q, R ∈ P , P ≻ Q and Q ≻ R, then αP + (1−α)R ≻ Q and Q ≻ βP +
(1− β)R for some 0< α < 1 and 0< β < 1.

Axiom 5 (Dominance). If P, Q ∈ P , A ∈ F , P (A) = 1 and y ∈ C, then Q ({y}) 4 P if y 4 x for all

x ∈ A, and P 4Q({y}) if x4 y for all x ∈ A.

Axiom 6 (Boundedness). If P ∈ P and Q is a simple probability measure, then Q4 PZ for some y ∈ C
and Z = {z ∈ C : z 4 y} if P ≻Q, and PZ 4Q for some y ∈ C and Z = {z ∈ C : y 4 z} if Q≻ P .

Axiom 1 is purely technical; it ensures the existence of measurable utility structure. Axiom 2, on

the other hand, defines an ordering relation on the set of probability measures. Axiom 3 is an indepen-

dence or linearity assumption which preserves preference under similar combinations. Axiom 4 is an

Archimedean-type assumption which facilitates the derivation of continuous real-valued utilities. Axiom

5 is a dominance principle which says, for example, that if all random consequences are inferior to some

certain consequence, then the certain consequence is preferred. Finally, Axiom 5 is again a technical

axiom which ensures the existence of finite expected utility with unbounded utility functions.
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Theorem 1 (Fishburn 1975). Suppose Axiom 1 holds. Then there exists a real-valued function u on C for

which

U (P ) =

∫

C

u (x) dP (x) (14)

is well defined and finite for all P ∈ P and such that

P ≻ Q ⇐⇒ U (P ) > U (Q) (15)

holds for all P, Q ∈ P , if and only if Axioms 2 through 6 hold.

Moreover, u(x) in (14) is unique up to a positive linear transformation: that is, if u(x) satisfies (14)

then a real-valued function v (x) on C satisfies (15) for all P,Q ∈ P , if and only if there are numbers

a > 0 and b such that

v (x) = au (x) + b for all x ∈ C. (16)

Proof. The proof of the theorem can be found in [9].

In words, Theorem 1 means that one probability distribution P is preferred to another probability

distribution Q if and only if the expected utility associated with P is higher than the expected utility as-

sociated with Q. Consequently, one can order different probability measures by comparing the expected

utilities.

4.2.2 Risk Theory

The risk theory is formulated in terms of a set P = {P,Q,R, . . .} of probability distributions on the real

line. Let ◦ denote convolution of probability distributions. The key concept of the risk theory is a binary

relation of comparative risk denoted <. Thus, P <Q states that P is at least as risky as Q, while P ∼Q
states that P and Q are equally risky. Let P ≻ Q whenever P < Q and not Q < P . Furthermore, let

β denote the degenerate distribution where the value zero is obtained with probability one and let nP
denote the distribution obtained by multiplying all values of P by some real number n. For continuous

distributions the density function of nP has to be properly normalized.

The axioms of the risk theory are incorporated into the definition of a risk system and a regular risk

system. Namely,

Axiom 7 (Weak Ordering). The binary relation < is connected and transitive.

Axiom 8 (Cancellation). P <Q if and only if P ◦R<Q ◦R.

Axiom 9 (Solvability). If P < β for all P in P , then for any P ≻ Q there exists some R in P such that

P ∼Q ◦R. If, on the other hand, β ≻ P for some P in P , then for any P in P there exists some R in P
such that P ◦R∼ β.

Axiom 10 (Archimedean). If P ≻Q≻ β, then there exists some positive integer n such that n •Q< P ;

where n •Q is defined inductively 1 •Q=Q, n •Q= [(n− 1) •Q] ∗Q.

The first axiom is the usual ordering assumption which states that P can be weakly-ordered with

respect to risk. The second axiom asserts that the risk ordering is compatible with the convolution op-

eration, in the sense that order between any pair of distributions is preserved when a third distribution

is convoluted with each of them. The solvability axioms states that when P is considered riskier than

Q then the risk of P can always be matched by combining Q with some appropriate R. Finally, the

Archimedean axiom is introduced to ensure that no risky option is infinitely riskier than any other one,

provided that both options are riskier than β.
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Definition 6. The system (P ,◦,<) is a risk system if it satisfies Axioms 7–10 for all P,Q,R in P .

Theorem 2 (Pollatsek & Tversky 1970). If (P ,◦,<) is a risk system then there exists a real-valued

function V defined on P , such that for any P,Q in P
(i) P <Q if and only if V (P )≥ V (Q)

(ii) V (P ◦Q) = V (P )+V (Q)
(iii) If W is another function satisfying (i) and (ii), then W (P ) = αV (P ) for some α > 0.

Proof. The proof of the theorem can be found in [31].

Definition 7. A risk system (P ,◦,<) is called a regular risk system if it also satisfies the following

axioms for all P,Q,R in P ,

Axiom 11 (Positivity). If S is a degenerate distribution with s > 0, then P < P ◦S for all P in P .

Axiom 12 (Monotonicity). For all P,Q in P with expected values E [P ] = E [Q] = 0 and for any real

n > 1, nP ≻ P and P <Q if and only if nP < nQ.

Axiom 13 (Continuity). If a sequence of distributions {Pn : n= 1,2, . . .} approaches a limiting distri-

bution P , that is, whenever Pr (x≤ Pn ≤ y) approaches Pr (x≤ P ≤ y) as n → ∞ for any real x, y,

then V (Pn) approaches V (P ), provided E [Pn] = E [P ] and Var [Pn] = Var [P ], where Var [P ] denotes

the variance of P .

The first axiom states that addition of the positive sure-thing to an risky option cannot increase its risk.

The second axiom asserts that, for distribution with zero expectation, risk increases with multiplication

by any n > 1, and that the risk ordering is preserved upon multiplication by a positive real number. The

last axiom is technical in nature. Namely, it establishes the continuity of the risk scale in the sense that if

all the distributions in the sequence have the same mean and variance then limV (Pn) = V (P ) whenever

limPn = P .

Theorem 3 (Pollatsek & Tversky 1970). If (P ,◦,<) is a regular risk system then there exists a unique

0< α≤ 1 such that for all P,Q in P with finite expectations E [P ], E [Q] and variances Var[P ], Var[Q]

P < Q ⇐⇒ V (P ) ≥ V (Q) (17)

where

V (P ) = αVar [P ]− (1− α)E [P ] . (18)

Proof. The proof of the theorem can be found in [31].

We can conclude that in a regular risk system, the risk ordering is generated by a linear combination

of expectation and variance. In other words, the risk associated with any probability distribution can

be readily computed, once a single parameter, α, is determined. Furthermore, α is attainable form a

single judgment of risk-equality between two distinct distributions, and its value determines the relative

contribution of the expectations and the variance to the riskiness of a given probability distribution.

4.2.3 Risk-Value Hypothesis

In the theory of finance, there is a long tradition of work in which individuals’ preferences over asset

portfolios are assumed to depend only on a few summary statistics. The aim is to develop statistics which

describe the salient features of risky assets without making any reference to preferences, and to model

the utility of a portfolio as some function of the values of those statistics. Individual-specific attitudes

to risk are then modeled by the parameters of that portfolio utility functions. In the most widely used
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model, assets are treated as one-dimensional prospects and for any asset, the two salient statistics are its

expected return and some dispersion measure of its returns. In this section, we briefly review a few basic

concepts of risk-value theory such as risk and reward measures, optimal risk-reward trade-offs, optimal

as well as simplified decision models [29]. We present how these concepts can be applied in the context

of adaptive transmission.

In the financial theory the reward is conventionally measured as the expected return on investment in

excess of some predefined threshold [29]. In adaptive transmission, where energy “investment” creates a

transmission channel that supports a certain link spectral efficiency r, the return is the actual link spectral

efficiency r. The reward µt is therefore the expected value of the difference between the actual ηr and

the target ηt link spectral efficiency, i.e., µt = E [ηr − ηt].
The risk has not yet received any consensus as to what constitutes its proper measure [29]. For

example, risk can be viewed as the standard deviation of ηr, outage probability ε (ηt), or lower partial

moments of ηr. The standard deviation as a measure of risk has an important limitation [29]. Namely,

the standard deviation measures both positive and negative deviations from the mean value. This is in

contradiction to a common perception of risk as a chance of getting performance worse than desired.

For that reason, lower partial moments of link spectral efficiency distribution are usually used as the risk

measure. The lower partial moments measure only deviations below a predefined threshold, their use as

the risk measures is fully justified within the framework of stochastic dominance and expected utility

models, and they represent a large number of common engineering risk measures as special cases [29].

The nth order lower partial moment of the random variable ηr with respect to a reference point ηt is [29]

l−n (ηt) =

∫ ηt

−∞

(ηt − ηr)
n pηr(ηr)dηr, n≥ 0 (19)

where pdf of ηr is denoted by pηr(ηr).
The outage probability ε(ηt) = Pr (ηr < ηt), a commonly used performance measure in communi-

cation engineering, is simply the zeroth order lower partial moment, i.e., ε(ηt) = l−0 (ηt). The major

shortcoming of the outage probability as the risk measure is that it gives the probability that an undesir-

able event might occur but gives no clues as to how severe it might be. Another risk measure, which is

commonly used in nuclear engineering, is expected shortfall l−1 (ηt). Expected shortfall measure incorpo-

rates both the probability and magnitude of the potential shortfall if it does occur. However, large losses

which occur infrequently represent the same risk as the small and frequent losses. In general, the lower

partial moments of order n ≤ 1 lack the ability to represent user’s risk aversion [29]. The risk aversion

means that a rational user, when offered several transmission schemes with the same expected link spec-

tral efficiency, prefers the scheme with the lowest risk. For that reason, in practical considerations, one

uses the second order lower partial moment l−2 (ηt) which is known as the below-target semivariance [29]

st(t) = l−2 (t) = E
{
[max(0, t− r)]2

}
. (20)

We define the maximum-return scheme as a transmission scheme which achieves the highest level of

return. Similarly, a transmission scheme with the lowest risk is the minimum-risk scheme. Furthermore,

a transmission scheme is considered efficient if it maximizes the return for a given amount of risk or

minimizes the risk for a given level of return [26, pp. 22–26].

A trade-off between reward and risk is quantitatively measured by a reward-to-semivariability ratio.

The most general reward-to-semivariability ratio is Kappa ratio κn (ηt) which is defined as the ratio of

the reward to the nth root of the nth order lower partial moment, or [15]

κn (ηt) =
E [ηr − ηt]

n
√

l−n (ηt)
, n > 0. (21)
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The optimal risk-reward scheme is a transmission scheme with the highest reward-to-semivariability

ratio κn (ηt) because it maximizes the reward per unit of risk taken [15]. Furthermore, it can be easily

verified that the transmission scheme which maximizes κn (ηt) has the highest expected value of utility

for a certain class of utility functions defined in [10, eq. (11)–(12)] with a given risk aversion rate and,

as such, it is considered the optimal choice under uncertainty [26, Ch. 10].

The maximum-return curve and the minimum-risk curve are curves in the risk-return plane which

graphically represent the set of transmission schemes with the highest level of return for a given amount

of risk and the lowest risk for a given level of return, respectively. Finally, the efficient curve is a curve

in the risk-return plane which graphically represents the set of efficient transmission schemes.

4.2.4 Safety-first schemes

The origin of safety-first approaches stems from the belief that the complexity of optimal transmission

schemes, and especially optimal decision algorithms, is so high that they cannot be implemented in

any practical system. One relies then on a simple decision algorithm that concentrates exclusively on

undesirable events. Three basic safety-first schemes have been proposed in [16, 32, 37].

In the scheme proposed by Roy in [32] one chooses the transmission scheme which minimizes the

outage probability Pr(ηr < ηt), i.e.,

minPr(ηr < ηt) . (22)

On the other hand, according to Kataoka’s safety-first scheme [16], one chooses the transmission scheme

that maximizes the target link spectral efficiency t such that the outage probability does not exceed a

predefined value ξ, i.e.,

max {ηt |Pr(ηr < ηt) ≤ ξ} . (23)

The third safety-first approach is proposed in [37] by Telser. By predicting the outage probability ξ and

the minimum acceptable link spectral efficiency α, one should try to maximize the expected link spectral

efficiency µr = E [ηr], i.e.,

max {µr |Pr(ηr ≤ α) ≤ ξ} . (24)

Roy’s and Kataoka’s safety-first approaches have already been used, without reference to risk-reward

theory, in [6] as objective criteria for designing adaptive transmission systems.

4.3 St. Petersburg Paradoxes in Performance Analysis of Adaptive Wireless Sys-

tems

The St. Petersburg game was a problem presented in 1713 by Nicholas Bernoulli [34]. It involves tossing

a fair coin repeatedly until the first time it lands “heads.” If this happens on the kth toss, the prize wk is

2k ducats. The expected winnings are

E [W ] =
∞∑

k=1

wkPr (W = wk) =
∞∑

k=1

2k2−k = ∞ (25)

where Pr (A) denotes the probability of the event A. A naive person, who only wants to maximize

the expected difference between the winnings and the price of game ticket, would pay any finite sum

of money to play this game. But, as Gabriel Cramer observed, no reasonable man would be willing to

pay more than 20 ducats to play the game [4]. Thus, rational behavior does not imply maximization of

winnings. In utility theory, this anomaly is usually called St. Petersburg paradox.

The expected utility hypothesis was formulated in Cramer’s suggestion for resolving this St. Peters-

burg paradox. Namely, one game is preferred to another one if and only if its expected utility of the
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winnings E [U ] is higher. Gabriel Cramer and Daniel Bernoulli suggested taking strictly concave func-

tions U =
√
W and U = lnW , respectively [4]. It can be easily shown that for both of these utility

functions u(w), the expected utility of winnings E [U ] is finite, that is,

E [U ] =
∞∑

k=1

u(wk) Pr (W = wk) < ∞. (26)

The solutions of St. Petersburg paradox proposed by Cramer and Bernoulli are not yet completely

satisfying. As pointed out by Menger [28], the game can easily be changed in such a way that the paradox

reappears. More specifically, one needs to offer even larger winnings wk = exp(2k) for U = lnW or

wk = 22k for U =
√
W . It can be easily verified that with those winnings, the expected utility E [U ] is

unbounded. In utility theory, this modified variant of St. Petersburg paradox is commonly referred to as

super St. Petersburg paradox.

In this section, we explore analogies between St. Petersburg game and adaptive transmission over

fading channels to show, by reductio ad absurdum, the limitations of commonly used theoretical fad-

ing models and the limitations of performance analysis that is based on those theoretical models. In

particular, we demonstrate that St. Petersburg paradoxes can occur in analysis of mathematical models

of adaptive wireless systems. We construct an adaptive energy control scheme which, according to the

standard fading models, leads to infinite average received energy although both the average transmitted

energy and the representative energy gain of the channel are finite. Obviously, practical transmission

systems cannot achieve infinite average received energy without violating the energy conservation law.

We discuss possible reasons for the St. Petersburg paradoxes to occur in analysis of wireless systems

and how they can be resolved using suitable performance metrics and fading models. To our best knowl-

edge, no such analysis of St. Petersburg paradoxes, different fading channel models, various adaptive

transmission schemes, and allowable class of performance metrics exists in communications literature.

In stationary and ergodic fading channels, a common performance indicator is the expected value of

some additive performance metric [5]

f (γ1, γ2, . . . , γm) =
∑m

i=1
fi (γi) (27)

which is a function of the received signal-to-noise ratios

γi =
si
σ2
n

=
|z̃i − ñi|2

σ2
n

=
λiqi
σ2
n

. (28)

The symbol si in (28) denotes the energy contained in the signal component of z̃i. Examples of addi-

tive performance functions (27) include ergodic capacity of a linear vector channel, where fi (γi) =
log2 (1+ γi) for all i, and the average received signal-to-noise ratio with fi (γi) = γi for all i. The

optimal adaptive transmission system is identified by finding the extrema of performance indicator

E [f (γ1,γ2, . . . ,γm)] subject to the average energy constraint (6).

The form of (5), (6), and (27) suggests that no generality is lost if we restrict our analysis to single-

channel transmission. For that reason, in the rest of the paper, we assume that m = 1 and omit the

subchannel index i.

4.3.1 Ordinary St. Petersburg Paradox

Let us assume that the transmitter sets the instantaneous transmission energy level q according to the

following rule

q(λ) =

{
0, for λ < µ

α

λ2p(λ)
, for λ≥ µ (29)
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where µ and α are some positive real constants. Since the transformation (29) associates a unique value

of a random variable q with each value of the random variable λ, (6) can be rewritten as [17, p. 615]

E [q] =

∫ ∞

0

q(λ) p(λ) dλ. (30)

Similarly, the energy of the signal component of z̃i becomes

E [s] =

∫ ∞

0

gq(λ) p(λ) dλ. (31)

With the energy control rule (29), the average transmitted energy

E [q] =

∫ ∞

µ

αλ−2dλ = αµ−1 (32)

is finite. The constants α and µ in (32) are selected such that the average energy constraint E [q] ≤ Eav

is satisfied. However, the average received energy is unbounded because

E [s] = lim
b→∞

∫ b

µ

α

λ
dλ = α lim

b→∞
ln b− α lnµ = ∞ (33)

does not converge on [µ,∞). Consequently, the average received signal-to-noise ratio E [γ] = E [s]/σ2
n

is also unbounded.

We can conclude that a naive maximization of the average received signal-to-noise ratio leads to the

absurd. Namely, the average received signal-to-noise ratio, as predicted by the model, is unbounded for

every possible value of average transmitted energy Eav and representative energy gain of the channel G0.

Thus, from mathematical point of view, it is not possible to discriminate different adaptive transmission

systems because all of them appear to be equally good. Furthermore, from physical point of view, these

adaptive transmission systems violate the energy conservation law.

4.3.2 Super St. Petersburg Paradox

The ordinary St. Petersburg paradox can be sometimes avoided if optimization of adaptive wireless

systems is done with respect to some function f (γ) of signal-to-noise ratio γ. The optimal system is

determined by finding extrema of

E [f(γ)] =

∫ ∞

0

f (γ) p(γ) dγ (34)

where p(γ) is the probability density function of signal-to-noise ratio γ. However, as the following

examples illustrate, the function f (γ) cannot be completely arbitrary.

Let us assume that all probability density functions p(γ), including those with infinite means, are

allowed in comparison. Let f (γ) be an increasing convex function. Then, by a well-known property of

convex functions

f (γ) ≥ f (ξ) + f ′(ξ) (γ − ξ) (35)

where f ′(ξ) > 0 denotes the first-order derivative of f (γ) at an arbitrary point 0 ≤ ξ < ∞. Since both

sides of the inequality

f (γ)− f(0) ≥ f ′(ξ) (γ − ξ) + f (ξ)− f(0) (36)

are nonnegative, we obtain
∫ ∞

0

f (γ) p(γ) dγ − f (0) ≥ f ′(ξ)

∫ ∞

0

γp(γ) dγ + C (37)
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where

C = f (ξ)− ξf ′(ξ)− f(0) < ∞. (38)

Therefore, we can conclude that E [f(γ)] is unbounded if E [γ] is unbounded and f (γ) is an increasing

convex function of γ.

On the other hand, if f (γ) is an increasing and concave function, then

f (γ) ≤ f (ξ) + f ′(ξ) (γ − ξ) (39)

and ∫ ∞

0

[f (γ)− f (0)] p(γ) dγ ≤ f ′(ξ)

∫ ∞

0

γp(γ) dγ + C. (40)

However, the integral on the left hand side of (40) can diverge when E [γ] is unbounded. For example, it

can be easily shown that both E [γ] and E [f(γ)] are unbounded when

f (γ) = log2 (1 + γ) (41)

and

p (γ) =







0, for γ < γ0
ln(1+ γ0)

(1+ γ) ln2(1+ γ)
, for γ ≥ γ0

(42)

where γ0 > 0 is an arbitrary positive constant.

4.3.3 Resolving Ordinary St. Petersburg Paradox

Fading Channel with Finite Peak Gain Let us assume that the channel gain λ is a random variable

with bounded support, that is,

supp (λ) = {λ ≥ 0 : p(λ) > 0} ⊂
[
0, λ
]

(43)

where λ <∞ and X denotes the closure of a set X . In other words, we assume that the energy gain of

the channel is bounded above by some finite λ, that is, 0≤ λ≤ λ. Thus, from (30) and (31), we obtain

E [s] =

∫ ∞

0

gq(λ) p(λ) dλ ≤ λ

∫ ∞

0

q(λ) p(λ) dλ = λE [q] . (44)

Since the right hand side of (44) is finite by our assumption E [q] ≤ Eav < ∞, we conclude that

the average received signal-to-noise ratio E [γ] must be finite. Consequently, it is always possible to

discriminate different transmission system using the value of E [γ] as a ranking criterion.

The introduction of a fading model with a bounded energy gain can be fully justified using the energy

conservation law. Namely, the energy at the output of the channel Eout = s+σ2
n cannot exceed the energy

at its inputs Ein = q+σ2
n or, equivalently, s≤ q for any value of λ. It can be easily seen that the condition

s≤ q implies that λ≤ 1.

Energy Control Rule with Finite Peak Gain Let us now assume that the transmitted energy q is a

random variable with bounded support, that is,

supp (q) = {q ≥ 0 : p(q) > 0} ⊂ [0, q] (45)

where q <∞. Consequently, from (30) and (31), we obtain

E [s] =

∫ ∞

0

gq(λ) p(λ) dλ ≤ q

∫ ∞

0

λp(λ) dλ = qE [λ] . (46)
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Since the right hand side of (46) is finite by our assumption G0 = t−1E [λ] < ∞, we conclude that the

average received signal-to-noise ratio E [γ] must be finite.

Examples of energy control rules with finite peak gain include water-filling [5, p. 2627]

q =

{
0, for λ < µwf

µ−1
wf −λ−1, for λ≥ µwf

(47)

and truncated channel inversion [5, p. 2629]

q =

{
0, for λ < µtci

βλ−1, for λ≥ µtci

. (48)

The positive constants µwf , µtci, and β in (47) and (48) are selected such that the average energy constraint

E [q] ≤ Eav is satisfied. It can be easily verified that the peak transmission energy is sup q = µ−1
wf <

∞ for water-filling and sup q = βµ−1
tci < ∞ for truncated channel inversion. Consequently, these two

adaptive transmission schemes ensure existence of finite E [γ] in all fading channels, including those

with unbounded gains.

Transmission Energy Level Uncorrelated with Channel Gain Ordinary St. Petersburg paradox does

not occur when q and λ are uncorrelated random variables. A special case of this transmission strategy

is transmission with constant energy, that is, q is a degenerate random variable. The average received

signal-to-noise ratio

E [γ] =
E [s]

σ2
n

=
E [λ · q]

σ2
n

=
E [λ] · E [q]

σ2
n

(49)

is finite because E [λ] and E [q] are finite in our system model. Hence, we conclude that E [q] <∞ and

E [λ] < ∞ are sufficient conditions to ensure that E [γ] is finite if instantaneous transmission energy

level q and channel energy gain λ are uncorrelated.

Energy Control Rule with Finite Second-Order Moment Another way to ensure that E [γ] is finite

is to limit the higher-order moments of channel energy gain λ and instantaneous transmitted energy q. In

particular, by applying Hölder’s inequality [17, p. 118] to E [s] = E [λ · q], we obtain

E [s] = E [λ · q] ≤
√

E [λ2]E [q2]. (50)

Therefore, we can conclude that E [γ] is finite when second-order moments of random variables q and λ
are finite.

Adaptive control of transmission energy level clearly requires stronger assumption about the mo-

ments of channel energy gain λ and transmission energy level q than traditionally used first-order condi-

tions E [λ] = tG0 and E [q]<Eav.

4.3.4 Resolving Super St. Petersburg Paradox

Unbounded Performance Metrics Let us assume that f (γ) is a continuous and unbounded function.

Furthermore, let the received signal-to-noise ratio γ be a random variable with bounded support, that is,

supp (γ) = {γ ≥ 0 : p(γ) > 0} ⊂ [a, b] (51)

where 0≤ a < b <∞. In other words, we assume that the amount of received energy is bounded below

and above by some finite a and b. Then, a continuous function f (γ) is necessarily bounded

c ≤ f (γ) ≤ d, for a ≤ γ ≤ b (52)

Distribution A:  Approved for public release; distribution is unlimited.



24 (75)

because it is defined on a bounded and closed interval [a,b] [17, p. 93]. The constants c and d are,

respectively, the finite minimum

c = min {f (γ) : a ≤ γ ≤ b} (53)

and the finite maximum

d = max {f (γ) : a ≤ γ ≤ b} (54)

of f (γ) on [a,b]. By the mean value theorem [17, p. 119], there is at least one point a < ξ < b such that

E [f(γ)] =

∫ b

a

f (γ) p(γ) dγ = f(ξ) . (55)

Since f (γ) is continuous and bounded on [a,b], we can conclude that E [f(γ)] is finite.

In communications, the peak received signal-to-noise ratio supγ is of course finite when both the

peak energy gain of the channel supλ and peak transmission energy sup q are finite. However, these

conditions are sufficient but not necessary ones. For example, the peak received signal-to-noise ratio is

finite when the received signal-to-noise ratio γ has a so-called simple probability distribution, that is, a

probability distribution which assigns probability one to a finite subset of [0,∞). With truncated channel

inversion (48), γ is a discrete random variable with probability density function

p (γ) = Pr (λ < µtci) δ (0) + Pr (λ ≥ µtci) δ
(
β/σ2

n

)
(56)

where δ (x) denotes Dirac’s delta function. Thus, the peak received signal-to-noise ratio supγ = β/σ2
n is

finite without requiring supλ or supq to be finite.

Let us now assume that γ is a random variable with unbounded support, that is, p (γ) > 0 for all

a≤ γ <∞. Furthermore, let f (γ) be an lth degree polynomial

f (γ) = clγ
l + cl−1γ

l−1 + . . .+ c1γ + c0 (57)

where c0, c1, . . . , cl are constant real coefficients. Then,

E [f(γ)] =
∑l

j=0
cj

∫ ∞

a

γjp(γ) dγ < ∞ (58)

if and only if E
[
γl
]
<∞ because, by Hölder’s inequality [17, p. 118],

∫ ∞

a

γjp(γ) dγ ≤
∫ ∞

a

γlp(γ) dγ (59)

for all 1 ≤ j ≤ l. Most of the practically used probability distributions have finite moments with, for

example, Cauchy and Pareto distributions being exceptions [33].

Unbounded Concave Performance Metrics Let f (γ) be a continuous and monotone increasing func-

tion of γ that is concave for some γ ≥ ξ. Furthermore, let γ has unbounded support, that is, p(γ)> 0 for

all a≤ γ <∞. Then,

E [f(γ)] =

∫ ξ

a

f (γ) p(γ) dγ +

∫ ∞

ξ

f (γ) p(γ) dγ. (60)

The first integral on the right hand side of (60) is finite because f (γ) is continuous and bounded on [a,ξ]
and [17, p. 119]

∫ ξ

a

f (γ) p(γ) dγ = f (ζ)

∫ ξ

a

p(γ) dγ < ∞ (61)
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where a < ζ < ξ. Therefore, it is sufficient to consider only the second integral on the right hand side of

(60) to verify whether E [f(γ)] is finite. By a well-known property of concave functions, we obtain

f (γ)− f (ξ) ≤ f ′(ξ) (γ − ξ) . (62)

Since both sides of (62) are nonnegative, we obtain

∫ ∞

ξ

f (γ) p(γ) dγ − f (ξ) ≤ f ′(ξ)

∫ ∞

ξ

γp(γ) dγ − ξf ′(ξ) . (63)

Furthermore, ∫ ∞

ξ

γp(γ) dγ ≤
∫ ∞

a

γp(γ) dγ = E [γ] (64)

because γp(γ) is nonnegative and ξ ≥ a. Finally, by combining (60), (61), (63), and (64), we obtain

E [f(γ)] ≤ f ′(ξ)E [γ] + C ′ (65)

where

C ′ = f (ζ)

∫ ξ

a

p(γ) dγ + f (ξ)− ξf ′(ξ) < ∞. (66)

Therefore, we can conclude that E [f(γ)] is finite provided that E [γ] is finite and f (γ) is a contin-

uous and monotone increasing function of γ that is concave on some interval [ξ,∞). Consequently,

those functions only permit discrimination among probability distributions of γ which have finite means

(cf. [1]).

In communications, an example of unbounded and concave performance metric is channel capacity

because f (γ) = log2 (1+ γ) is concave function of γ but it tends to infinity when γ increases.

Bounded Performance Metrics Consider a continuous and bounded function f (γ), that is,

c ≤ f (γ) ≤ d, for 0 ≤ γ < ∞ (67)

where

c = inf {f (γ) : 0 ≤ γ < ∞} > −∞ (68)

and

d = sup {f (γ) : 0 ≤ γ < ∞} < +∞. (69)

Finite constants c and d are the infimum and the supremum of f (γ) on [0,∞), respectively. From (55)

we can conclude that there is at least one point 0< ξ <∞ such that E [f(γ)] = f (ξ)<∞ because f (γ)
is continuous and bounded on [0,∞). Consequently, one can discriminate among all possible adaptive

transmission systems corresponding to all possible probability distributions of γ, including those with

infinite means (cf. [28]).

In communications, an example of continuous and bounded performance metric is symbol error rate

because probability of symbol error as a function of the received signal-to-noise ratio γ is always a real

number between zero and one.
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4.4 Improving Link Budget Analysis of Adaptive Wireless Systems with Proba-

bilistic Inequalities

The ratio of the desired received power Pd to thermal noise power σ2
n before detection is commonly

called the desired signal-to-noise ratio γd. The equation that relates desired signal-to-noise ratio to the

link parameters, such as transmitted power Pt, path loss Lp, receiver and transmitter antenna gains Gr

and Gt, etc., is called the link budget [40].

In this section, we focus on the link budget analysis in adaptive transmission systems. We demon-

strate fundamental differences in the link budget analysis of adaptive and nonadaptive systems. The

novelty of our approach arises from the fact that we consider the effects of possible adaptation of trans-

mission power at the transmitter, a fact that is usually ignored in the conventional link budget analysis.

We propose to complement the conventional link budget analysis with the correction term that we call

adaptation gain. We derive the upper and lower bounds of the adaptation gain. Furthermore, we recog-

nize that the calculation of the required fade margin also needs a refinement because adaptation of the

transmission power changes not only the average received power E [Pr] but also the distribution of the

received power Pr. We derive the lower and upper bounds of the fade margin.

4.4.1 Propagation Modeling and Link Budget Analysis

Empirical propagation models are usually based on measurements. The transmitter sends a constant-

power sounding signal, usually a bandlimited white noise-like signal. At the receiver, a local mean is

obtained by measuring squared-envelope of the received signal and averaging it over a spatial distance

of several tens of wavelengths. Usually, the local mean experiences slow variations due to the presence

of large objects such as buildings or trees. This phenomenon is commonly called shadowing. If the local

mean is averaged over sufficiently large spatial distances to average over the shadows, the area mean is

obtained [40]. The area mean µr is the average signal strength that is received to or from a mobile station

over a large area that lies at approximately the same distance from the base station [40], i.e.,

µr = E [G]Pt. (70)

The inverse of E [G] is usually referred to as empirical path loss. The empirical path loss describes all

the propagation effects between the transmitter and receiver such as antenna loses, shadowing, etc. In

nonadaptive systems, all the parameters such as transmission power, antenna gains, receiver sensitivity,

required minimum received signal-to-noise ratio are fixed. For that reason, designers usually determine

the maximum allowable path loss that would still yield acceptable link performance. In a nonadaptive

transmission system, the maximum allowable path loss is [40, p. 28, eq. 1.27])

Lmax(dB) = Pt(dBm) +Gt(dB)+Gr(dB)−Sr(dBm)−M(dB) −LI(dB)+Gh(dB) (71)

where Gt and Gr are, respectively, transmitter and receiver antenna gains, Sr is the receiver sensitivity,

M is the fade margin, LI is the interference margin, and Gh is the handoff gain.

4.4.2 Adaptation Gain

In adaptive transmission systems which employ adaptive transmission power control, the instantaneous

transmission power Pt and instantaneous channel gainG are correlated. Thus, the average received power

is [41]

E [Pr] = E [G · Pt] = E [G]E [Pt]

(

1 +
Cov [G,Pt]

E [G]E [Pt]

)

(72)
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where Cov [G,Pt] denotes the covariance between random variables G and Pt. In a system without

adaptive power control E [Pt] = Pt and Cov [G,Pt] = 0 and thus (72) reduces to (70). We refer to the

term

A =
E [Pr]

E [G]E [Pt]
= 1 +

Cov [G,Pt]

E [G]E [Pt]
(73)

as adaptation gain. In words, the adaptation gain describes how the area mean changes when adaptive

power control is used at the transmitter. Consequently, in an adaptive transmission system, the maximum

allowable path loss is

Lmax(dB) = Pt(dBm) +Gt(dB)+Gr(dB)+A(dB)−Sr(dBm) −M(dB) −LI(dB) +Gh(dB) (74)

where the adaptation gain A(dB) is an additional correction term that describes additional effects due to

adaptation of transmission power at the transmitter.

Proposition 1. In any transmission system, the average received power satisfies the condition

E [Pr] ≥ E2
[√

Pt

] (
E
[
G−1

])−1
(75)

with equality if and only if Pt = E [Pt] (E [G−2])
−1

G−2. Consequently, the lower bound on adaptation

gain is

A(dB) ≥ 10 log10
E2
[√

Pt

]

E [Pt]E [G]E [G−1]
. (76)

Proof. We prove the proposition using a modified version of the Hölder inequality [17, p. 118]. We intro-

duce the modification to the original form of the Hölder inequality to account for an arbitrary weighting

function φ(λ). For arbitrary functions f (λ), g (λ), and φ(λ)

∣
∣
∣
∣

∫ b

a

f
1

p (λ)φ(λ)dλ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ b

a

[f (λ)g (λ)φ(λ)]
1

p · g− 1

p (λ)φ
1

q (λ)dλ

∣
∣
∣
∣

≤
[∫ b

a

|f (λ)g (λ)φ(λ)|dλ
] 1

p
[∫ b

a

∣
∣
∣g

− q

p (λ)φ(λ)
∣
∣
∣dλ

] 1

q

(77)

where p−1 + q−1 = 1 and p > 1. By rearranging the terms in (77), we obtain

∫ b

a

|f (λ)g (λ)φ(λ)|dλ

≥
∣
∣
∣
∣

∫ b

a

f
1

p (λ)φ(λ)dλ

∣
∣
∣
∣

p[∫ b

a

∣
∣
∣g

− q

p (λ)φ(λ)
∣
∣
∣dλ

]− p

q

. (78)

The equality in (77) and in (78) is obtained if and only if

f (λ) g (λ) = cg−
q

p (λ) (79)

where c > 0 is an arbitrary positive constant. By using the substitutions Pt = f (λ), G = g (λ), and

p= q = 2 in (78), we obtain

E [Pr] ≥ E2
[√

Pt

] (
E
[
G−1

])−1
(80)

with equality if and only if

PtG = cG−1. (81)
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Since E [Pt] = cE [G−2], we conclude that

c = E [Pt]
(
E
[
G−2

])−1
(82)

and equality in (80) is obtained if and only if

Pt = E [Pt]
(
E
[
G−2

])−1
G−2 (83)

which was to demonstrate.

Proposition 2. In any transmission system, the average received power satisfies the condition

E [Pr] ≤
√

E [P 2
t ]E [G2] (84)

with equality if and only if Pt = E [Pt] (E [G])−1G. Consequently, the upper bound on adaptation gain

is

A(dB) ≤ 10 log10

√

E [P 2
t ]E [G2]

E [Pt]E [G]
. (85)

Proof. We prove the proposition using a modified version of the Hölder inequality [17, p. 118]. We intro-

duce the modification to the original form of the Hölder inequality to account for an arbitrary weighting

function φ(λ). For arbitrary functions f (λ), g (λ), and φ(λ)

∣
∣
∣
∣

∫ b

a

f (λ)g (λ)φ(λ)dλ

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ b

a

f (λ)φ
1

p (λ) · g (λ)φ 1

q (λ)dλ

∣
∣
∣
∣

≤
[∫ b

a

|f p (λ)φ(λ)|dλ
] 1

p
[∫ b

a

|gq (λ)φ(λ)|dλ
] 1

q

(86)

where p−1 + q−1 = 1 and p > 1. The equality in (86) is obtained if and only if

f p (λ) = cgq (λ) = c [g (λ)]
p

p−1 (87)

where c > 0 is an arbitrary positive constant. By using the substitutions Pt = f (λ), G = g (λ), and

p= q = 2 in (86), we obtain

E [Pr] ≤
√

E [P 2
t ]E [G2] (88)

with equality if and only if

Pt =
√
cG. (89)

Since E [Pt] =
√
cE [G], we conclude that

√
c = E [Pt] (E [G])−1

(90)

and equality in (88) is obtained if and only if

Pt = E [Pt] (E [G])−1 G (91)

which was to demonstrate.
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4.4.3 Fade Margin

We define the fade margin as M = E [Pr] /Pd and denote probability of the outage event by α =
Pr(Pr < Pd) and probability of exceeding the desired received power by β = Pr(Pr > Pd).

Proposition 3. For any distribution of Pr and any value of Pd, the required fade margin

M ≥ 1− α (92)

with equality if and only if Pr has the two-point distribution with Pr(Pr = 0) = α and Pr(Pr = Pd) =
1−α.

Proof. By Markov’s inequality [42, p. 44], for any non-negative random variable Pr with expected value

E [Pr] and Pd > 0, the probability

Pr (Pr ≥ Pd) ≤
E [Pr]

Pd

= M (93)

with equality if and only if the random variable Pr has the two-point distribution such that

Pr (Pr = Pd) = 1− Pr (Pr = 0) =
E [Pr]

Pd

. (94)

From (93) and (94) we can conclude that

M ≥ Pr (Pr ≥ Pd) = 1− Pr (Pr < Pd) = 1− α (95)

with equality if and only if Pr has the two-point distribution with Pr(Pr = 0) = α and Pr(Pr = Pd) =
1−α.

Proposition 4. For any distribution of Pr and any Pd < E [Pr], the required fade margin

M ≤ 1 + P−1
d

√

β (1− β)−1 V [Pr] (96)

with equality if and only if Pr has the two-point distribution with

Pr(Pr = Pd) = 1− β (97)

Pr
(
Pr = β−1E [Pr]− β−1 (1− β)Pd

)
= β (98)

where V [Pr] denotes the variance of Pr.

Proof. We prove the proposition using the one-sided Chebyshev inequality [44, p. 152]. First, we note

that

Pr(Pr ≤ Pd) = Pr(Pr −E [Pr]≤ Pd −E [Pr]) = Pr(E [Pr]−Pr ≥ E [Pr]−Pd) . (99)

To apply the one-sided Chebyshev inequality, the term E [Pr]− Pd in (99) must be positive, that is,

E [Pr]−Pd > 0. The condition E [Pr]−Pd > 0 implies that Pd <E [Pr], or equivalently, M > 1 because

E [Pr] =MPd. By the one-sided Chebyshev inequality [44, p. 152],

Pr(Pr ≤ Pd) = Pr(E [Pr]−Pr ≥ E [Pr]−Pd)≤
V [Pr]

V [Pr] + (E [Pr]−Pd)
2 . (100)
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After some simple algebra in (100), we obtain

(E [Pr]− Pd)
2

V [Pr]
=

P 2
d (M − 1)2

V [Pr]
≤ 1

Pr (Pr ≤ Pd)
− 1. (101)

Since both sides of inequality (101) are nonnegative, we can rewrite (101) as

Pd (M − 1)
√

V [Pr]
≤
√

1

Pr (Pr ≤ Pd)
− 1 (102)

After some simple algebra in (102), we obtain

M ≤ 1 + P−1
d

√

β (1− β)−1 V [Pr] (103)

because

Pr (Pr ≤ Pd) = 1− Pr (Pr > Pd) = 1− β. (104)

The equality in one-sided Chebyshev inequality of the form

Pr (X − E [X] ≥ kD [X]) ≤ 1

1 + k2
, (105)

where k > 0 and D [X] denotes the standard deviation of a random variable X , is obtained when the

random variable X has a two-point distribution with probabilities (cf. [45, 46])

Pr(X = E [X] + kD [X]) =
1

1+ k2
(106)

Pr
(
X = E [X]− k−1D [X]

)
=

k2

1+ k2
. (107)

By comparing (100) and (105) we conclude that X =−Pr, E [X] =−E [Pr], D [X] =D [Pr], and

kD [X] = E [Pr]− Pd > 0. (108)

By substituting (108) into (106) we obtain (97). Similarly, by substituting (108) into (107) and using

Pr(Pr = Pd) = Pr(X = E [X] + kD [X]) =
1

1+ k2
= 1−Pr(Pr > Pd) = 1− β (109)

we obtain (98).

Remark 1. We demonstrate the relationship between the adaptation gain A and the maximum fade

margin maxM using the results from [43]. In particular, the variance of the received signal-to-noise

ratio in (96) is (cf. [43, p. 712])

V [Pr]≈ E2 [Pt]V [G] +E2 [G]V [Pt] + 2E2 [G]E2 [Pt] (A− 1) . (110)

In general, Propositions 3 and 4 together with Remark 1 imply that the adaptation of transmission

power at the transmitter has a significant effect on the value of the required fade margin. In general,

the fade margin achieves its minimum and maximum values when the Pr has a two-point distribution.

Furthermore, as (110) suggests, the maximum value of fade margin M increases when the adaptation

gain A increases.

The adaptation gains A(dB) and fade margins M(dB) achieved by water-filling (WF) [5, p. 2627] and

truncated channel inversion (CI) [5, p. 2629] in a composite gamma/lognormal fading channel are shown
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in Fig. 5. In a composite gamma/lognormal fading channel, the probability density function of G has the

form [40, p. 102]

p(G) =
ξmmGm−1

√
2πσsΓ(m)

∫ ∞

0

1

wm+1
exp

[

−(ξ lnw−µs)
2

2σ2
s

−mG

w

]

dw (111)

where ξ = 10/ ln 10. We set the multipath parameter m to 4, the mean µs and the standard devia-

tion σs of 10 log10G to 0 dB and 4 dB, respectively. The transmitted signal-to-noise ratio was set to

10log10E [Pt/σ
2
n] = 5 dB and the target outage probability α was set to 0.1.

The results in Fig. 5 show that the adaptation gain A(dB) of the water-filling is positive whereas the

adaptation gain A(dB) of truncated channel inversion is negative. Furthermore, the water-filling power

control scheme requires much larger fade margin M(dB) than the nonadaptive system to meet the same

requirement of outage probability. The truncated channel inversion, on the other hand, does not require

any fade margin to meet the outage probability requirement. In fact, the fade margin M(dB) of truncated

channel inversion is negative.

In Fig. 6 we plot the adaptation gains A(dB) of water-filling and truncated channel inversion power

control rules as the function of the average transmitted signal-to-noise ratio E [Pt/σ
2
n]. The upper and

lower bounds of the adaptation gain A(dB) are shown for comparison. The numerical results suggest that

with the water-filling power control rule one achieves almost the highest possible value of adaptation

gain. However, the adaptation gain of water-filling power control rule vanishes when the transmitted

signal-to-noise ratio increases. The adaptation gain A(dB) of truncated channel inversion is independent

of the average transmitted signal-to-noise ratio and it is almost the lowest possible adaptation gain.

In Fig. 7 we plot the fade margin M(dB) required to meet the outage probability requirement α = 0.1
both with water-filling and truncated channel inversion. Fade margins are plotted as functions of the

average transmitted signal-to-noise ratio E [Pt/σ
2
n]. The numerical results suggest that the truncated

channel inversion does not need any fade margin to meet the outage requirement α = 0.1 and the fade

margin does not depend on E [Pt/σ
2
n]. On the other hand, the required fade margin with water-filling

power control significantly depends on E [Pt/σ
2
n]. The fade margin of water-filling reduces to the fade

margin of a nonadaptive systems when average transmitted signal-to-noise ratio increases. However,

the fade margin of water-filling increases without any bound when the transmitted signal-to-noise ratio

decreases. In fact, for the value of the average transmitted signal-to-noise ratio below approximately 4.5

dB meeting the outage probability requirement α = 0.1 with water-filling power control is not possible

and the value of the fade margin is infinite.

4.5 Application of Rational Decision Theory to Adaptive Power Control

4.5.1 Safety-first schemes

Roy’s (22) and Kataoka’s (23) safety-first approaches have already been used, without reference to risk-

reward theory, in [6] as objective criteria for designing adaptive transmission systems. Therefore, we

consider only the Telser’s safety first approach defined in (24).

According to Telser’s safety-first approach, one needs to maximize the expected link spectral effi-

ciency E [ηr] subject to the outage probability constraint Pr(ηr ≤ α) ≤ ζ and the minimum acceptable

link spectral efficiency ηt
max {E [ηr] |Pr(ηr ≤ ηt) ≤ ζ } . (112)

The optimization problem (112) can be formulated as the variational problem with the expected link

spectral efficiency E [ηr] as the variational integral and the constraints

Pr

(
m∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)

≤ ηt

)

≤ ζ (113)
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∫

R

m∑

k=1

ρ2k p(λ) dλ = (1− β)Pav (114)

∫

T

m∑

k=1

ρ2k p(λ) dλ = βPav (115)

as subsidiary conditions [12, p. 45]. The integration regions R and T are defined as follows

T =

{

(λ1, λ2, . . . , λn) :
m∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)

≥ ηt

}

(116)

and

R =

{

(λ1, λ2, . . . , λn) :
m∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)

≤ ηt

}

. (117)

The constraint (113) is an ordinary outage probability constraint. Constraints (114) and (115) together

constitute the average power constraint. The parameter 0 < β ≤ 1 controls the division of transmission

power below and above the target link spectral efficiency ηt. Furthermore, we have additional inequality

constraints, i.e., qk ≥ 0 for all k = 1,2, . . . ,m. Since the inequality constraints cannot be easily added

to variational problems, we introduce a new vector-valued function ρ : Rm
+ → Rm

+ and reformulate the

optimization problem accordingly. Namely, we assume that qk = ρ2k which ensures that q ∈ Rm
+ . The

optimization problem (112) can therefore be stated as

min {J [ρ] = −E [ηr] |K1[ρ] = ζ,K2[ρ] = βPav, K3[ρ] = (1− β)Pav} (118)

where

J [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

F (λ,ρ)dλm · · ·dλ2dλ1 (119)

K1 [ρ] =

∫

R

G1(λ,ρ)dλm · · ·dλ2dλ1 (120)

K2 [ρ] =

∫

R

G2(λ,ρ)dλm · · ·dλ2dλ1 (121)

K3 [ρ] =

∫

T

G3(λ,ρ)dλm · · ·dλ2dλ1 (122)

are integrals over the fixed region Q. The respective variational integrands in (119), (120), (121), and

(122) are given by

F (λ,ρ) =−
[ m∑

k=1

log2

(

1+
ρ2kλk

σ2
n

)]

+

p(λ) (123)

G1(λ,ρ) = p(λ) (124)

G2(λ,ρ) =
m∑

k=1

ρ2kp(λ) (125)

G3(λ,ρ) =
m∑

k=1

ρ2kp(λ) (126)

A necessary condition for the vector-valued function ρ to be an extremal of J [ρ] is that the function

components ρk = ρk(λk) satisfy Euler-Lagrange equations, i.e., [12, p. 152]

∂

∂ρk
L(λ,ρ) = 0, k = 1,2, . . . ,m (127)
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where

L(λ,ρ) = F (λ,ρ) + ξ1G1(λ,ρ) + ξ2G2(λ,ρ) + ξ3G3(λ,ρ) (128)

and where ξ1 6= 0, ξ2 6= 0, and ξ3 6= 0 are three constants, also known as Lagrange multipliers, which are

independent of λ [12, p. 45].

We observe that some first order partial derivatives ∂F/∂ρk may not exist when ηr = ηt because

the function F (λ,ρ) may have a jump discontinuity on the ridge between regions R and T .Hence, we

assume that the general solution to (118) is given by discontinuous functions ρk [12, p. 61]. Consequently,

the functions ρk are defined separately in the region T = {λ ∈Q : ηr(λ,ρ)≥ ηt} and its complement

R = {λ ∈Q : ηr(λ,ρ)< ηt}. Furthermore, on the boundary surface S = {λ ∈Q : ηr(λ,ρ) = ηt} ⊂ T
the functions ρk must satisfy the Weierstrass-Erdmann conditions [12, p. 63]

lim
ηr→η−t

∂L

∂ρ′k
= lim

ηr→η+t

∂L

∂ρ′k
(129)

lim
ηr→η−t

(

L− ρ′k
∂L

∂ρ′k

)

= lim
ηr→η+t

(

L− ρ′k
∂L

∂ρ′k

)

. (130)

The symbol ρ′k in (129) and (130) denotes the first order derivative of ρk with respect to λk, i.e., ρ′k =
∂ρk/∂λk.

Proposition 5. If λ ∈ T , then the kth component of q is

qk = σ2
n

(
θ−1
T −λ−1

k

)

+
, k = 1,2, . . . ,m (131)

where

θT = σ2
nξ3 ln 2 > 0. (132)

On the other hand, if λ ∈R, then the kth component of q is

qk = σ2
n

(
θ−1
R −λ−1

k

)

+
, k = 1,2, . . . ,m (133)

where

θR = σ2
nξ2 ln 2 > 0. (134)

Proof. Deferred to Appendix.

Remark 2. The optimization problem (118) involves four constants or variables: β,ξ1, ξ2, ξ3. However,

we have only three necessary conditions (127), (129), and (130). It means that the solution of the opti-

mization problem cannot be uniquely determined. In fact, the solution to the optimization problem (118)

is a function of one of those parameters.

The value of the third Lagrange multiplier ξ3 can be determined from the second Weierstrass-

Erdmann condition (130) provided that ξ1 and ξ2 are found from Euler-Lagrange equations (127) and

β is defined by the system designer.

We illustrate the performance of the adaptive power control algorithm in a single-input single-output

(SISO) Rayleigh fading channel. The adaptive power control rule algorithm is designed based on the

Telser’s safety-first approach. The average transmitted signal-to-noise ratio is set to 10 dB and target

link spectral efficiency is 2 bit/(s·Hz), that is, Pav/σ
2
n = 10 dB and ηt = 2. The relationship between all

Lagrange multipliers is presented in Figure 8. The first Lagrange multiplier ξ1 is negative whereas the

second ξ2 and third ξ3 Lagrange multipliers are positive. Since

ξ1 ≈ − ∆J

∆K1

= −∆E [ηr]

∆ζ
< 0, (135)
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ξ2 ≈ − ∆J

∆K2

= − 1

β

∆E [ηr]

∆Pav

> 0, (136)

and

ξ3 ≈ − ∆J

∆K3

= − 1

1− β

∆E [ηr]

∆Pav

> 0, (137)

we conclude that the average link spectral efficiency decreases when we increase the power in regions

R and T and increases when we increase the allowable outage probability ζ . The symbols ∆J , ∆K1,

∆K2, and ∆K3 denote the arbitrarily small changes of objective function and the first, second, and third

constraint, respectively. The decrease of mean link spectral efficiency when we increase the transmission

power in the region T is shown in Figure 9. In Figure 10 we plot the relationship between the second ξ2,
the third ξ3 Lagrange multiplier, and mean link spectral efficiency E[ηr]. It can be seen that the mean link

spectral efficiency increases when the value of the first Lagrange multiplier ξ1 is increased towards zero.

This is expected behavior, because the mean link spectral efficiency achieves its maximum value when

the outage probability constraint is relaxed, that is when ξ1 = 0. Then, ξ2 = ξ3 and the power control rule

becomes the conventional water-filling.

In a general case, the Lagrange multipliers ξ2 and ξ3 are different, that is ξ2 6= ξ3. Consequently, the

power control rule as well as achievable link spectral efficiency is not continuous on the boundary of

regions R and T . In a SISO channel, the boundary of regions R and T is a point. This effect is illustrated

in Figure 11 for a power control rule that needs to satisfy the requirement of minimum target link spectral

efficiency of ηt = 2 bit/(s·Hz) with outage probability ζ = 0.25. It can be easily shown that the difference

between integrand values on the boundary of R and T must be equal to ξ1. By comparing the results in

Figures 8 and 11, we see that the difference is approximately 0.6 as expected. Furthermore, the power

control rule becomes continuous if and only if ξ1 = 0, that is, when we relax the outage probability

constraint K1.

There is a fundamental trade-off between target link spectral efficiency ηt and outage probability ζ .

This trade-off is illustrated in Figures 12, 13, 14, and 15. The results suggest that only some combination

of target link spectral efficiency ηt and outage probability ζ are possible. In fact, those combinations lie

below the red line in Figures 14 and 15. From practical point of view, all combinations of target link

spectral efficiency ηt and outage probability ζ below water-filling line are inferior to water-filling. It is

because, the water-filling power control rule offers either higher target link spectral efficiency ηt for a

given outage probability ζ or a lower outage probability ζ for a given target link spectral efficiency ηt.
From practical point of view, a useful operating regions for pairs of ηt and ζ lies between water-filling

boundary and our proposed transmission scheme boundary. The useful operating region lies between

blue and red lines in Figures 16 and 17.

4.5.2 Risk Theory

In risk theory, one constructs a risk measure system where different random variables are ordered with

respect to their risk measure V . In this work, we prefer the least risky transmission scheme, so our goal

is to minimize the risk measure

V (ηr) = αVar [ηr]− (1− α)E [ηr] (138)

where 0< α≤ 1 is some arbitrary constant. Specifically, we look for the adaptive power control scheme

which implies the lowest possible risk.

To minimize the risk measure V (138), we need to obtain a power control rule which minimizes the

variance Var[ηr] subject to the average link spectral efficiency constraint

E [ηr] = µr(λ, q) = rav, (139)
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Figure 10: Relationship between the second and third Lagrange multipliers and mean link spectral effi-

ciency with Telser’s safety-first rule in a SISO Rayleigh fading channel.
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probability ζ in a SISO channel.
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Figure 14: Contour plot of achievable mean link spectral efficiency as a function of target link spectral

efficiency ηt and outage probability ζ in a SISO channel.
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Figure 15: Contour plot of achievable mean link spectral efficiency as a function of target link spectral

efficiency ηt and outage probability ζ in a MIMO channel.
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Figure 16: Practical operating region of adaptive power control rule based on Telser’s safety-first ap-

proach in a SISO channel.
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Figure 17: Practical operating region of adaptive power control rule based on Telser’s safety-first ap-

proach in a MIMO channel.
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the average power constraint (8), and the physical constraint that the transmission power cannot be

negative, i.e.,

min
{
Var [ηr] |µr = rav, µq = Pav, q ∈ Rm

+

}
. (140)

The optimization problem (140) can be formulated as the variational problem with the variance as the

variational integral and the constraints (8) and (139) as subsidiary conditions [12, p. 45]. However, we

have additional inequality constraints, i.e., qk ≥ 0 for all k = 1,2, . . . ,m. Since the inequality constraints

cannot be easily added to variational problems, we introduce a new vector-valued function ρ : Rm
+ → Rm

+

and reformulate the optimization problem accordingly. Namely, we assume that qk = ρ2k which ensures

that q ∈ Rm
+ . The optimization problem (157) can therefore be stated as

min {J [ρ] = Var [ηr] |K1[ρ] = rav, K2[ρ] = Pav} (141)

where

J [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

F (λ,ρ)dλm · · ·dλ2dλ1 (142)

K1 [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

G1(λ,ρ)dλm · · ·dλ2dλ1 (143)

K2 [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

G2(λ,ρ)dλm · · ·dλ2dλ1 (144)

are integrals over the fixed region Q. The respective variational integrands in (142), (143), and (144) are

given by

F (λ,ρ) =

[ m∑

k=1

log2

(

1+
ρ2kλk

σ2
n

)

− rav

]2

p(λ) (145)

G1(λ,ρ) =
m∑

k=1

log2

(

1+
ρ2kλk

σ2
n

)

p(λ) (146)

G2(λ,ρ) =
m∑

k=1

ρ2kp(λ) (147)

A necessary condition for the vector-valued function ρ to be an extremal of J [ρ] is that the function

components ρk = ρk(λk) satisfy Euler-Lagrange equations, i.e., [12, p. 152]

∂

∂ρk
L(λ,ρ) = 0, k = 1,2, . . . ,m (148)

where

L(λ,ρ) = F (λ,ρ) + ξ1G1(λ,ρ) + ξ2G2(λ,ρ) (149)

and where ξ1 6= 0 and ξ2 6= 0 are two constants, also known as Lagrange multipliers, which are indepen-

dent of λ [12, p. 45].

Proposition 6. The transmission power level in the kth subchannel, that is, the kth component of q is

qk = σ2
n

[
θ−1
R (w,λ)−λ−1

k

]

+
, k = 1,2, . . . ,m (150)

where

θR(w,λ) =
σ2
n (ln 2)

2

2wξ−1
2

{

W

[

σ2
n (ln 2)

2

2wξ−1
2

w

√

2(2rav−ξ1)/2

∏w
k=1λk

]}−1

(151)

with ξ2 > 0, and where w is a unique integer in {1,2, . . . ,m} such that λw > θR(w,λ) ≥ λw+1. The

symbol W (z) in (151) denotes the principal branch of the Lambert W function [7].

Distribution A:  Approved for public release; distribution is unlimited.



43 (75)

−10
2

−10
1

−10
0

−10
−1

−10
−2

10
−2

10
−1

10
0

10
1

Lagrange multiplier ξ
1

L
a

g
ra

n
g

e
 m

u
lt
ip

lie
r 

ξ 2

Figure 18: The optimal pairs of Lagrange multipliers in a SISO channel.
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Figure 19: The optimal pairs of Lagrange multipliers in a MIMO channel.

Distribution A:  Approved for public release; distribution is unlimited.



44 (75)

Proof. Deferred to Appendix.

We illustrate the performance of the adaptive power control algorithm in a single-input single-output

(SISO) Rayleigh fading channel as well as multiple-input multiple-output (MIMO) Rayleigh fading

channel with two transmitter and two receiver antennas. The adaptive power control algorithm is de-

signed based on the theory of risk. In both cases the average transmitted signal-to-noise ratio is set to 10

dB, that is, Pav/σ
2
n = 10 dB. The relationship between Lagrange multipliers is presented in Figures 18

and 19 for a SISO and MIMO channel, respectively. In both cases, the first Lagrange multiplier ξ1 is

negative wheras the second Lagrange multiplier ξ2 is positive. Since

ξ1 ≈ − ∆J

∆K1

= −∆Var [ηr]

∆rav
< 0 (152)

and

ξ2 ≈ − ∆J

∆K2

= −∆Var [ηr]

∆Pav

> 0, (153)

we can conclude that the variance of link spectral efficiency Var [ηr] will increase when we decrease

the average transmission power or increase the average transmission rate requirement. On the other

hand, the variance will decrease when the average transmission power is increased or the average rate

requirement is decreased. The symbols ∆Var [ηr], ∆rav, and ∆Pav denote arbitrarily small changes in

variance of link spectral efficiency, average transmission rate, and average power constraint, respectively.

These changes of link spectral efficiency variance with respect to average transmission rate are shown

in Figures 20 and 21. The optimal combinations of mean link spectral efficiency E[ηr] and variance of

link spectral efficiency Var [ηr], shown in Figures 20 and 21, form an efficient frontier. The efficient

frontier is a fundamental limit in the sense that it is not possible to construct a transmission scheme with

combinations of mean E[ηr] and variance of link spectral efficiency Var[ηr] which lie above the frontier

in Figures 20 and 21. All combinations of mean and variance of link spectral efficiency which lie below

the frontier are suboptimal. It is because there is other combination of mean E[ηr] and variance Var[ηr]
which offers lower variance for the same mean or higher mean for the same variance. In particular, this

combination lies on the efficient frontier.

In risk theory, we are primarily interested in a risk index (138) and we want to minimize it subject

to some preselected value of α. We plot the value of risk index V [ηr] for different values of α in Fig-

ures 22 and 23. The value of risk V [ηr] index is normalized such that its minimum value equals zero.

It was achieved by adding a constant cV = E[ηr] to V [ηr]. Note that addition of constant value does

not change the ordering of power control schemes given by (17) in any way. The minimum values of

risk index V [ηr] for respective values of α are denoted by asterisk. The results suggest that for every

value of α a different combination of mean and variance from the efficient frontier is the optimal one. As

expected, when α approaches zero, schemes with higher mean value are preferred. On the other hand,

when α approaches one, schemes with lower variance are preferred. The selection of α offers flexibility

in selecting the optimal transmission scheme. In practice, the selection of a specific combination of mean

E[ηr] and variance of link spectral efficiency Var[ηr] is achieved by properly selecting one of Lagrange

multipliers. We illustrate this in Figures 24 and 25 where we plot the mean of link spectral efficiency and

the corresponding variance of link spectral efficiency for a given value of the second Lagrange multiplier

ξ2. By changing the value of ξ2 one moves along the efficient frontier.

4.5.3 Expected Utility Hypothesis

In this work, we propose to use the following utility function

u (ηr) =

{
ηr, for ηr ≥ ηt

ηr − β (ηt − ηr)
2 , for ηr < ηt

(154)
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Figure 20: Efficient frontier of power control rule inspired by Pollatsek and Tversky theory of risk (SISO
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Figure 21: Efficient frontier of power control rule inspired by Pollatsek and Tversky theory of risk

(MIMO channel).
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Figure 22: Risk index V as a function of parameter α in a SISO channel.
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Figure 24: Mean and variance of link spectral efficiency as functions of ξ2 in a SISO channel.
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Figure 25: Mean and variance of link spectral efficiency as functions of ξ2 in a SISO channel.
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to rank the random distributions of achievable link spectral efficiency ηr. The constant β in (154) is an

arbitrary positive constant β > 0. It can be easily verified that the ordering function U is

U =

∫ ∞

0

u (ηr) p (ηr) dηr =

∫ ∞

0

ηrp(ηr)dηr
︸ ︷︷ ︸

E[ηr]

−
∫ ηt

0

(ηt − ηr)
2 p(ηr)dηr

︸ ︷︷ ︸

l−
2
(ηt)

. (155)

Consequently, to maximize the expected utility U (155), we need to obtain a power control rule which

minimizes the below-target semivariance l−2 (ηt) subject to the average link spectral efficiency constraint

E [ηr] = µr(λ, q) = rav, (156)

the average power constraint (8), and the physical constraint that the transmission power cannot be

negative, i.e.,

min
{
l−2 (ηt) |µr = rav, µq = Pav, q ∈ Rm

+

}
(157)

for some target link spectral efficiency ηt.
The optimization problem (157) can be formulated as the variational problem with the below-target

semivariance (20) as the variational integral and the constraints (8) and (156) as subsidiary condi-

tions [12, p. 45]. However, we have additional inequality constraints, i.e., qk ≥ 0 for all k = 1,2, . . . ,m.

Since the inequality constraints cannot be easily added to variational problems, we introduce a new

vector-valued function ρ : Rm
+ → Rm

+ and reformulate the optimization problem accordingly. Namely,

we assume that qk = ρ2k which ensures that q ∈ Rm
+ . The optimization problem (157) can therefore be

stated as

min
{
J [ρ] = l−2 (ηt) |K1[ρ] = rav, K2[ρ] = Pav

}
(158)

where

J [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

F (λ,ρ)dλm · · ·dλ2dλ1 (159)

K1 [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

G1(λ,ρ)dλm · · ·dλ2dλ1 (160)

K2 [ρ] =

∫ ∞

0

∫ λ1

0

· · ·
∫ λm−1

0

G2(λ,ρ)dλm · · ·dλ2dλ1 (161)

are integrals over the fixed region Q. The respective variational integrands in (159), (160), and (161) are

given by

F (λ,ρ) =

{[

t−
m∑

k=1

log2

(

1+
ρ2kλk

σ2
n

)]

+

}2

p(λ) (162)

G1(λ,ρ) =
m∑

k=1

log2

(

1+
ρ2kλk

σ2
n

)

p(λ) (163)

G2(λ,ρ) =
m∑

k=1

ρ2kp(λ) (164)

A necessary condition for the vector-valued function ρ to be an extremal of J [ρ] is that the function

components ρk = ρk(λk) satisfy Euler-Lagrange equations, i.e., [12, p. 152]

∂

∂ρk
L(λ,ρ) = 0, k = 1,2, . . . ,m (165)
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where

L(λ,ρ) = F (λ,ρ) + ξ1G1(λ,ρ) + ξ2G2(λ,ρ) (166)

and where ξ1 6= 0 and ξ2 6= 0 are two constants, also known as Lagrange multipliers, which are indepen-

dent of λ [12, p. 45].

We observe that some first order partial derivatives ∂F/∂ρk may not exist when ηr = ηt because the

function f(z) =(z)+ is not differentiable at z = 0. Hence, we assume that the solution to (158) is given

by continuous piecewise smooth functions ρk [12, p. 61]. Consequently, the functions ρk are defined

separately in the region T = {λ ∈Q : ηr(λ,ρ)≥ ηt} and its complement R = {λ ∈Q : ηr(λ,ρ)< ηt}.

Furthermore, on the boundary surface S = {λ ∈Q : ηr(λ,ρ) = ηt} ⊂ T the functions ρk must satisfy

the Weierstrass-Erdmann conditions [12, p. 63]

lim
ηr→η−t

∂L

∂ρ′k
= lim

ηr→η+t

∂L

∂ρ′k
(167)

lim
ηr→η−t

(

L− ρ′k
∂L

∂ρ′k

)

= lim
ηr→η+t

(

L− ρ′k
∂L

∂ρ′k

)

. (168)

The symbol ρ′k in (167) and (168) denotes the first order derivative of ρk with respect to λk, i.e., ρ′k =
∂ρk/∂λk.

Proposition 7. If λ ∈ T , then the kth component of q is

qk = σ2
n

(
θ−1
T −λ−1

k

)

+
, k = 1,2, . . . ,m (169)

where

θT = −σ2
nξ

−1
1 ξ2 ln 2 > 0. (170)

Proof. Deferred to Appendix.

Proposition 8. If λ ∈R, then the kth component of q is

qk = σ2
n

[
θ−1
R (w,λ)−λ−1

k

]

+
, k = 1,2, . . . ,m (171)

where

θR(w,λ) =
σ2
n (ln 2)

2

2wξ−1
2

{

W

[

σ2
n (ln 2)

2

2wξ−1
2

w

√

2(2ηt−ξ1)/2

∏w
k=1λk

]}−1

(172)

with ξ2 > 0, and where w is a unique integer in {1,2, . . . ,m} such that λw > θR(w,λ) ≥ λw+1. The

symbol W (z) in (172) denotes the principal branch of the Lambert W function [7].

Proof. Deferred to Appendix.

Remark 3. By Proposition 5, Lagrange multipliers ξ1 and ξ2 have different signs, i.e., ξ1ξ2 < 0. Since

ξ2 > 0 by Proposition 6, we conclude that ξ1 < 0 and ξ2 > 0.

Remark 4. The achievable link spectral efficiency ηr(λ,q) in the region T depends on λ only through a

constant θT . This allows us to describe the regions T and R in a simple way. Namely, let us assume that

ηr(λ,q)≥ ηt is satisfied with transmission in exactly w subchannels, i.e., in the region

Vw =
{

λ ∈ Q :
∑w

k=1
log2

(
1 + qkλk/σ

2
n

)
≥ ηt

}

(173)

where w = 1,2, . . . ,m. Substituting (169) into (173) yields

Vw =
{

λ ∈ Q :
∏w

k=1
λk ≥ 2ηt (θT )

w
}

. (174)

Since ηr(λ,q)≥ ηt can be satisfied with any value of w, the region T must be a union of regions Vw, i.e.,

T =
⋃m

w=1Vw. Consequently, the region R = Q\T , must be an intersection of the regions Uw = Q\Vw,

i.e., R =
⋂m

w=1Uw.
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Remark 5. The regions T and R are divided into, respectively, v and v+1 subregions Tw and Rw given

by

Tw = {λ ∈ T : λw > θT ≥ λw+1} (175)

Rw = {λ ∈R : λw > θR(w,λ)≥ λw+1} (176)

where w = 1,2, . . . ,m. The additional region R0 is given by

R0 = {λ ∈R : λ1 ≤ θR(1,λ)} . (177)

Since the thresholds θT and θR exist and are unique, {T1, . . . ,Tm} and {R0, . . . ,Rv+1} are partitions of

the respective regions T and R. If λ ∈ (Rw ∪Tw), then exactly w subchannels are used for transmission.

On the other hand, if λ ∈R0, then the transmission is suspended.

The boundary surface of Ti and Ti+1 is given by Pi = {λ ∈ Ti : λi+1 = θT} where i= 1,2, . . . ,m−1.

On the other hand, the boundary surface of Ri−1 and Ri is

Oi = {λ ∈Ri−1 : λi = θR(i,λ)} where i= 1,2, . . . ,m. If λ ∈Oi, then solving the equality θR(i,λ) = λi

for λi yields

θR(i,λ) = λi =

{
σ2
nξ2 (2ηt − ξ1)

−1 ln2, i= 1

θR(i− 1,λ) , i≥ 2
(178)

which implies that θR(i,λ), and thus q, is continuous on all boundary surfaces Oi. The set of equalities

(178) is obtained by substituting λi into (172) and rearranging the terms such that the resulting equality

has the form ã=W (b̃). Then, using the identity ãeã = b̃ [7] and grouping the terms which contain λi on

one side lead to the equation azea = b, whose solution is a= lnb if z = 0 and a= zW ( z
√
b/z) otherwise.

The regions Rw and Tw can be defined over the whole Rm
+ by permuting the coordinate axes, e.g.

Rw → R
(π)
w . The respective regions Rw, R

(π)
w , Tw, and T

(π)
w in a generic two-input two-output channel

are shown in Figure 26.

Proposition 9. The extremal q defined by (169) and (171) satisfies Weierstrass-Erdmann conditions

(167) and (168) on the boundary surface S and is an absolute minimizer of l−2 (ηt).

Proof. Deferred to Appendix.

By using (175) and (176) and substituting the optimal power control rules (169) and (171) into (159),

(160), and (161), we obtain

l−2 (ηt) =
m∑

w=1

∫

Rw

{

ηt −
w∑

k=1

log2

[
λk

θR(w,λ)

]}2

p(λ)dλ

+

∫

R0

η2t p(λ)dλ (179)

µr =
m∑

w=1

w∑

k=1

{∫

Rw

log2

[
λk

θR(w,λ)

]

p(λ)dλ

+

∫

Tw

log2

(
λk

θT

)

p(λ)dλ

}

= rav (180)

µq = σ2
n

m∑

w=1

w∑

k=1

{∫

Rw

[
1

θR(w,λ)
− 1

λk

]

p(λ)dλ

+

∫

Tw

(
1

θT
− 1

λk

)

p(λ)dλ

}

= Pav (181)
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Figure 26: Illustration of respective transmission regions R and T .

where dλ= dλ1 · · ·dλm. In general, the multiple integrals in (179), (180), and (181) do not have analyti-

cal closed-form solutions and one has to resort to numerical Monte Carlo methods to evaluate them. The

valid pair (ξ1, ξ2) for a given pair (rav,Pav) can be found by solving set of nonlinear equations formed

by (180) and (181) provided that the solution exists, i.e., a pair (rav,Pav) is feasible.

We illustrate the performance of the adaptive power control algorithm in a single-input single-output

(SISO) Rayleigh fading channel as well as multiple-input multiple-output (MIMO) Rayleigh fading

channel with two transmitter and two receiver antennas. In both cases the average transmitted signal-

to-noise ratio is set to 10 dB, that is, Pav/σ
2
n = 10 dB. The relationship between Lagrange multipliers

is presented in Figures 27 and 28 for a SISO and MIMO channel, respectively. In both cases, the first

Lagrange multiplier ξ1 is negative whereas the second Lagrange multiplier ξ2 is positive. Since

ξ1 ≈ − ∆J

∆K1

= −∆l−2 (ηt)

∆rav
< 0 (182)

and

ξ2 ≈ − ∆J

∆K2

= −∆l−2 (ηt)

∆Pav

> 0, (183)

we can conclude that the below-target semideviation of link spectral efficiency l−2 (ηt) will increase when

we decrease the average transmission power or increase the average transmission rate requirement. On

the other hand, the variance will decrease when the average transmission power is increased or the

average rate requirement is decreased. The symbols ∆l−2 (ηt), ∆rav, and ∆Pav denote the arbitrarily

small changes of the below-target semideviation, average transmission rate, and average transmission

power, respectively.
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The changes of the below-target semideviation with respect to the average transmission rate and av-

erage transission power are shown in Figures 29 and 30. The optimal combinations of mean link spectral

efficiency E[ηr] and below-target semideviation of link spectral efficiency l−2 (ηt), shown in Figures 29

and 30, form an efficient frontier. The efficient frontier is a fundamental limit in the sense that it is not

possible to construct a transmission scheme with combinations of mean and below-target semideviation

of link spectral efficiency which lie above the frontier in Figures 29 and 30. All combinations of mean

and below-target semideviation of link spectral efficiency which lie below the frontier are suboptimal. It

is because there is other combination of mean and below-target semideviation which offers lower vari-

ance for the same mean or higher mean for the same variance. In particular, this combination lies on the

efficient frontier.

In Figures 29 and 30 we also plot the risk-reward performance of practical adaptive transmission

scheme — truncated channel inversion [19]. Clearly, its performance is suboptimal because it lies below

the efficient frontier. The optimal power control rules (169) and (171) are continuous power control

rules. As a consequence, there is some maximum value of below-target semideviation which cannot

be exceeded without violating average power constraint. Similarly, there is some minimum value of

average link spectral efficiency constraint which cannot be lowered without violating the average power

constraint. At these two extrema, the Lagrange multipliers achieve their maximum allowable values.

Then, the maximum rate boundary and minimum risk boundary for continuous power control rules are

found by relaxing the average power constraint. Relaxing the average power constraint means that actual

average transmission power is smaller or equal to our target value Pav. The boundaries are shown with

black and violet lines in Figures 29 and 30. We observe that the below-target semideviation increases

as we reduce the average transmission power. This trend is the expected behavior, because the second

Lagrange multiplier ξ2 is positive. We postulate that the minimum risk boundary below the minimum risk

scheme and maximum rate boundary beyond the maximum rate scheme are achieved by discontinuous

power control rules. For the minimum risk boundary, we set ξ2 = 0. It can be easily shown that it leads

to truncated channel inversion and explains why the curves for truncated channel inversion approach the

minimum risk boundary. It can be shown that the maximum rate boundary is actually achieved by the

power control rule based on Telser’s safety-first approach. We have derived the maximum rate boundary

for a general MIMO channel. The maximum rate boundaries are shown in Figures 29 and 30. In general,

the ridge along which the variational integrand is discontinuous can be located either on the boundary

of regions R and T or inside a region R. This fact is reflected in Figure 30 where the maximum rate

boundary is marked with a pink and green line for a ridge located on the boundary of regions R and T
and ridge located inside a region R, respectively.

In practice, the selection of a specific combination of the mean and the below-target semideviation of

link spectral efficiency is achieved by properly selecting one of Lagrange multipliers. We illustrate this

in Figures 31 and 32 where we plot the mean of link spectral efficiency and the corresponding below-

target semideviation of link spectral efficiency for a given value of the second Lagrange multiplier ξ2.
By changing the value of ξ2 one moves along the efficient frontier.

4.5.4 Risk-Value Hypothesis

The risk-value model considered in Section 4.2.3 and expected-utility model presented in Section 4.5.3

are compatible models. Specifically, both models lead to the same form of adaptive power control rule.

However, these models will definitely select a different power control rule from the set of efficient power

control rules. Specifically, the expected utility model will select the scheme with the highest expected

utility as the optimal power control rule. On the other hand, the risk-value model will select the scheme

with the highest Kappa ratio as the optimal power control rule.
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Figure 27: Relationship between Lagrange multipliers in a SISO Rayleigh fading channel.
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Figure 28: Relationship between Lagrange multipliers in a MIMO Rayleigh fading channel.
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Figure 29: Risk-reward plane for a SISO Rayleigh fading channel.
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Figure 30: Risk-reward plane for a MIMO Rayleigh fading channel.
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Figure 31: Mean of link spectral efficiency and below-target semideviation as the function of Lagrange

multiplier ξ2 in a SISO channel.
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Figure 32: Mean of link spectral efficiency and below-target semideviation as the function of Lagrange

multiplier ξ2 in a MIMO channel.
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4.6 Performance of Adaptive Power Control Schemes in Interference Channels

Ad-hoc networking has been of critical interest to the military for many years. In commercial applications

there is presently a high interest also in wireless mesh networks, which are an intermediate between

conventional cellular networks and ad-hoc networks. Typically, mesh networks are more cost-effective

and have better performance than ad-hoc networks. Therefore, our focused software demonstrator will

visualize operation of radio resource management block in the transceiver of a broadband mobile ad-hoc

network (MANET) with mesh networking capability.

4.6.1 Requirements and specifications for the focused demonstrator

The main requirements of the focused software demonstrator can be divided into performance and com-

plexity requirements. The main performance requirements are:

R1 The demonstrator models wireless ad-hoc communications between at least three mobile nodes.

R2 The demonstrator supports pedestrian and vehicular radio propagation environments in 2.5 GHz

frequency band.

R3 The demonstrator models multichannel transmission and reception, for example, simultaneous

transmission using multiple antennas.

R4 The demonstrator uses adaptive modulation and coding techniques that support flexible control

of offered Quality of Service with special emphasis on precedence, error rate, overall delay, and

throughput.

R5 The demonstrator enables advanced radio resource management for efficient use of radio re-

sources.

The main complexity requirement is:

R6 The complexity of the networking equipment is kept at manageable level and excessive system

complexity is avoided.

The performance requirements R1–R3 as well as complexity requirement R6 are satisfied by as-

suming that the demonstrator models a system that resembles an existing and commercially available

state-of-the-art networking equipment. In particular, we propose that a reference system for our focused

demonstrator is the system based on IEEE 802.16e-2005 standard, which is commonly referred to as

“mobile WiMAX.” The major system parameters such as radio propagation models, minimum antenna

requirements, and allowable transmission powers are taken from IEEE 802.16e-2005 specification [39].

Focused demonstrator models simultaneous bidirectional transmissions between several transceivers

that are randomly spaced in a given geographical area as shown in Figure 33. A simplified block di-

agram of a single transceiver is shown in Figure 34. Shaded functional blocks in Figure 34 will not

be implemented in focused software demonstrator and an appropriate physical abstraction layer will be

used instead. In the transmitter part, information source generates a block of data bits to be transmitted.

Data bits are encoded by the channel encoder and modulated to form data symbols. The channel en-

coder is convolutional turbo encoder with the following code rates: 1/2, 2/3, 3/4, and 5/6 [39]. The set of

available modulation schemes includes quadrature amplitude modulation (QAM) with 2, 4, 16, and 64

constellation points [39]. In a spatial multiplexer, data symbols are converted from serial to parallel rep-

resentation. Consequently, a separate stream of data symbols is obtained for every transmitter antenna.

After spatial multiplexing, the data symbols are allocated to specific space/frequency subchannels by

taking into account their Quality of Service requirements and the actual state of communication chan-

nel. Finally, the data symbols are subject to the orthogonal frequency-division multiplexing (OFDM)

by inverse fast Fourier transform (IFFT) processors. In the receiver part, the received signal is first pro-

cessed by fast Fourier transform (FFT) processors to obtain the data symbols. The original order of data

symbols is restored in subchannel demapper. Next, the received symbols are converted from parallel to
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Figure 33: Communication scenario to be modeled by focused demonstrator.

serial representation in spatial demultiplexing block. A block of reconstructed data bits is obtained at the

information destination after demodulation and decoding. The channel estimator provides the estimate

of the actual channel state to demodulation and decoding blocks as well as radio resource management

block. With time division duplex (TDD) the antenna switch swaps the antenna feeds between transmitter

and receiver. The antenna switch is controlled by the radio resource management block to enable flexible

allocation of radio resources between uplink and downlink transmissions.

Radio network system simulations typically use an abstraction of the physical layer to model link

performance. Many simulation methodologies use a block fading channel where an instantaneous snap-

shot of the desired user’s and the interferers’ channels is used to determine the respective Signal-to-

Interference-plus-Noise Ratios (SINR). Along with knowledge of the transmit power, pathlosses, shad-

owing and noise variances, various link performance parameters such as instantaneous throughput, bit

error rate, and overall delay can be calculated from their dependency on the SINR value. In our focused

software demonstrator, the input variables of the physical abstraction layer include modulation and cod-

ing scheme, number of transmitter and receiver antennas, Quality of Service requirements for a given

block of data bits, number of OFDM subcarriers to be used for transmission, transmission power, and

channel occupancy ratio for antenna switch. The outputs of the physical abstraction layer are through-

put, bit error rate, and overall transmission delay. The focused software demonstrator will illustrate the

principle of operation of advanced radio resource management and channel measurement blocks as well

as link level performance as reported by the physical abstraction layer.

Efficient use of radio resources is achieved by appropriate channel measurement and reporting, in-

terference management, and flexible resource allocation mechanisms. In radio resource management,

our goal is to optimize the throughput rate between two nodes with respect to constraints on the overall

delay, allowable transmission power, available transmission bandwidth, and allowable amount of inter-

ference to other users. In particular, we propose to use financial risk-reward theory for flexible radio

resource management. The radio resource allocation algorithms are based on the expected utility hy-

pothesis, risk measurement hypothesis, risk-reward hypothesis, and safety-first approach. A novel aspect

of these algorithms is the ability to include additional constraint on the risk associated with data trans-

mission. We believe that such a feature enables a very flexible control of Quality of Service parameters

because reducing overall transmission delay and prioritizing a given packet can be directly translated
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Figure 34: Simplified block diagram of the demonstrator transceiver.

into minimizing the risk in our risk-reward framework. Consequently, with those algorithms the various

Quality of Service requirements can be flexibly supported already at the physical layer. As shown in

Figure 34, the ultimate goal of radio resource allocation algorithms is to select the optimal combina-

tion of modulation scheme, error coding scheme, subchannel mapping permutation, transmission power,

and partition of radio resources between uplink and downlink transmissions to maximize the throughput

rate. The maximization of throughput rate is performed with respect to constraints on the overall delay,

bit error rate, transmission power, transmission bandwidth, and interference level. Furthermore, the ra-

dio resource allocation algorithms need information about instantaneous radio propagation conditions

as well as the collection of reliable link statistics over different timescales, for example, throughput rate

statistics, received signal strength statistics, actual estimate of bit error rate, etc. These measurements are

available locally at the transceiver and are reported to a remote transmitter via a dedicated fast feedback

channel of the bidirectional radio link.

4.6.2 Numerical results

We study the performance of adaptive power control algorithms developed in Section 4.5.3 in interfer-

ence channels. We simulate simultaneous transmissions between several transceivers that are randomly

spaced in a given geographical are as shown in Figure 33. We assume that all transmitters and receivers

are equipped with multiple antennas. Furthermore, we assume that a given receiver is decoding its in-

tended message and treats other transmissions as interference. Consequently, signals received from other

transmitters are treated as additional noise.

The link parameters of a given user are randomly selected from respective uniform distributions.

The average power constraint Pav expressed in decibels is uniformly distributed between 0 and 10 dBm.
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Figure 35: Communication scenario in interference channel.

Similarly, the target link spectral efficiency ηt is uniformly distributed between 0 and 5 bits per channel

use, and the first Lagrange multiplier ξ1 is uniformly distributed between −102 and −10−4. The value of

the second Lagrange multiplier ξ2 is selected such that the average power constraint (8) is satisfied with

equality.

The interference between users’ links is modeled by treating transmissions of other links as interfer-

ence. The principle of calculating the equivalent noise variance is illustrated in Figure 35. In words, we

assume that the equivalent noise power experienced by the ith user at its lth receive antenna is

σ2
il = σ2

n +
N∑

j=1
i6=j

Gij

K∑

k=1

|Hkl (i, j)|2 Pjk (184)

where Gij is the large-scale fading parameter that captures the effect of path loss and shadowing in radio

wave propagation between ith and jth user, Hkl (i, j) is the small-scale fading parameter that captures

the effect of multipath fading between kth transmitter antenna of jth user and lth receiver antenna of ith
user, and Pjk is the power of radio wave emitted from the kth transmitter antenna of the jth user. The

parameters Gij =Gji are randomly selected from a uniform distribution on the interval (0,Gmax) where

Gmax denotes the minimum link attenuation. We assume that the multipath fading is Rayleigh fading and

consequently Hkl (i, j) are circularly-symmetric complex Gaussian random variables with zero mean and

unit variance.

We consider two interference scenarios: strong and mild interference. In the strong interference sce-

nario Gmax = 1 which corresponds to minimum link attenuation of 0 dB. In other words, the power of

the interfering signal is comparable with the power of the useful signal. In the mild interference scenario

Gmax = 0.1 which corresponds to minimum link attenuation of 10 dB.

We study two aspects of adaptive power control algorithms developed in Section 4.5.3: stability and

long-term performance. In the stability analysis, all transmission channels are fixed during iterations of

adaptive power control algorithm and we observe the transient behavior of the adaptive power control al-

gorithm. In particular, we analyze the transmission power level Pi and achievable link spectral efficiency

ηr of every user. In the long-term performance analysis, all transmission channels are randomly selected

for every iteration and we observe the behavior of the adaptive power control algorithm. We analyze the

transmission power level and achievable link spectral efficiency of every user.
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Table 1: Link attenuation between respective users in dB

Gij User 1 User 2 User 3 User 4 User 5 User 6

User 1 0 10.5268 14.1915 13.5718 12.5164 11.9060

User 2 10.5268 0 20.7023 11.0017 22.9864 13.4486

User 3 14.1915 20.7023 0 17.1914 10.4037 10.0950

User 4 13.5718 11.0017 17.1914 0 16.0565 30.1161

User 5 12.5164 22.9864 10.4037 16.0565 0 15.3680

User 6 11.9060 13.4486 10.0950 30.1161 15.3680 0

Table 2: Link parameters

Parameter User 1 User 2 User 3 User 4 User 5 User 6

Pav/σ
2
n 5.336526 dB 8.244052 dB 3.542203 dB 7.182546 dB 2.219409 dB 0.112527 dB

ξ1 -74.000026 -52.000048 -34.000066 -46.000054 -100.000000 -14.000086

ξ2 35.080505 14.785183 23.487298 16.228476 80.410992 15.619362

ηt 0.897401 1.689059 4.629471 4.878653 3.401497 1.643604

Mild Interference Scenario We analyze the performance of the simple ad-hoc network with six inter-

fering users. We assume that each link consists of transmitter with two antennas and receiver with two

antennas. The link attenuations between users are shown in Table 1. The parameters of individual links

are presented in Table 2.

The transmitter signal-to-noise ratio, that is, the ratio of the instantaneous transmission power of

the ith user Pi to the noise variance σ2
n, is shown in Figures 36 and 38. The achievable link spectral

efficiencies ηr of specific links are plotted in Figures 37 and 39. The simulation results in Figures 36

and 37 suggest that the adaptive power control algorithm adapts relatively fast to changing environment

and quickly converges to the equilibrium state. In Figure 40 we mark the risk-reward trade-off operating

point of every user in interference-free and mild interference scenario with, respectively, asterisk and

dot. The respective points for a given user are connected with a line. In general, the results in Figure 40

suggest that the achievable average link spectral efficiencies µr decrease and risk l−2 , associated with

transmitting below target rate ηt, increases under interference conditions.

Strong Interference Scenario We analyze the performance of the simple ad-hoc network with six

interfering users. We assume that each link consists of transmitter with two antennas and receiver with

two antennas. The link attenuations between users are presented in Table 3. The parameters of individual

links are presented in Table 4.

The transmitter signal-to-noise ratio, that is, the ratio of the instantaneous transmission power of

the ith user Pi to the noise variance σ2
n, is shown in Figures 41 and 43. The achievable link spectral

efficiencies ηr of specific links are plotted in Figures 42 and 44. The simulation results in Figures 41

Table 3: Link attenuation between respective users in dB

Gij User 1 User 2 User 3 User 4 User 5 User 6

User 1 0 1.3054 3.0054 1.1645 19.4908 5.4526

User 2 1.3054 0 1.0720 0.5829 1.6085 2.0308

User 3 3.0054 1.0720 0 1.2288 2.4931 7.6666

User 4 1.1645 0.5829 1.2288 0 1.9689 0.6061

User 5 19.4908 1.6085 2.4931 1.9689 0 11.6798

User 6 5.4526 2.0308 7.6666 0.6061 11.6798 0
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Figure 36: Stability analysis in mild interference scenario: Transmission power of respective users.
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Figure 37: Stability analysis in mild interference scenario: Achievable link spectral efficiencies of re-

spective users.
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Figure 38: Long-term behavior analysis in mild interference scenario: Transmission power of respective

users.

Table 4: Link parameters

Parameter User 1 User 2 User 3 User 4 User 5 User 6

Pav/σ
2
n 7.873924 dB 7.436599 dB 4.090288 dB 2.8880306 dB 0.910419 dB 9.123266 dB

ξ1 -94.000006 -78.000022 -88.000012 -38.000062 -98.000002 -16.000084

ξ2 28.591191 25.656438 51.467543 27.788194 100.000000 3.878274

ηt 0.510229 1.241310 0.330195 3.322590 4.947051 2.246864
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Figure 39: Long-term behavior analysis in mild interference scenario: Achievable link spectral efficien-

cies of respective users.
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Figure 40: Risk-reward trade-off of respective users in mild interference scenario.
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Figure 41: Stability analysis in strong interference scenario: Transmission power of respective users.

and 42 suggest that the adaptive power control algorithm adapts relatively fast to interference and exhibits

quasi-stable behavior. In particular, as shown in Figures 41 and 42 the transmission power Pi oscillates

between two boundary values whereas link spectral efficiency flips between two neighboring values or,

equivalently, modulation and coding schemes. In Figure 45 we mark the risk-reward trade-off operating

point of every user in interference-free and strong interference scenario with, respectively, asterisk and

dot. The respective points for a given user are connected with a line. In general, the results suggest that

the achievable average link spectral efficiencies µr decrease and risk l−2 , associated with transmitting

below target rate ηt, increases under interference conditions.

5 Conclusions

We propose a novel approach to analysis and optimization of the performance of adaptive transmission

schemes in information-unstable channels. The new approach is based on observation that the instanta-

neous rate of reliable transmission is a random variable and the best adaptive transmission strategy should

be determined by ordering probability distributions. We propose to use methods and tools of theory of

rational decision-making to construct relevant representation and uniqueness theorems as well as valid

performance indicators. In particular, we suggest using riskiness and expected utility as relevant perfor-

mance indicators. We rigorously justify their use in wireless communication scenarios using similarity

of information-theoretic problems to various decision-theoretic problems. The application of decision

theory brings a new intuition to the understanding of the performance of the adaptive transmission in

information-unstable channels.
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Figure 42: Stability analysis in strong interference scenario: Achievable link spectral efficiencies of

respective users.
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Figure 43: Long-term behavior analysis in strong interference scenario: Transmission power of respective

users.

A Proofs of propositions

A.1 Proof of Proposition 7

If λ ∈ Q and ηr(λ,ρ) ≥ ηt > 0, then F (λ,ρ) = 0. Consequently, the set of Euler-Lagrange equations

(165) becomes

ρk

(
ξ1λk

σ2
n + ρ2kλk

+ ξ2 ln2

)

= 0, k = 1,2, . . . ,m. (185)

A trivial solution, ρ= 0 for all λ ∈ T , does not satisfy the second Weierstrass-Erdmann condition (168)

which implies that ρ 6= 0 on the boundary of T . It is easily seen that the choice

qk = ρ2k = σ2
n

(
θ−1
T −λ−1

k

)

+
, k = 1,2, . . . ,m (186)

where

θT = −σ2
nξ

−1
1 ξ2 ln 2 (187)

satisfies (185) for all λ such that F (λ,ρ) = 0.

Let us assume that θT < 0, which implies that qk ≥ 0 if and only if λk < θT . Since λk > 0 by

definition, we obtain ρk = 0 and ηr(λ,ρ) = 0 for all λ, which contradicts the assumption ηr(λ,ρ) ≥
ηt > 0. Therefore, we conclude that θT > 0.
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Figure 44: Long-term behavior analysis in strong interference scenario: Achievable link spectral effi-

ciencies of respective users.
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Figure 45: Risk-reward trade-off of respective users in strong interference scenario.
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A.2 Proof of Proposition 8

If λ ∈ Q and 0 ≤ ηr(λ,ρ) < ηt, then F (λ,ρ) 6= 0. Consequently, the set of Euler-Lagrange equations

(165) becomes

2ρkλk

σ2
n + ρ2kλk

[

2ηt − ξ1
2

−
m∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)]

− ρk ln 2

ξ−1
2

= 0 (188)

where k = 1,2, . . . ,m. A trivial solution, ρ = 0 for all λ ∈ R, does not satisfy the second Weierstrass-

Erdmann condition (168) which implies that ρ 6= 0 on the boundary of T . Consequently, ρ = 0, which

implies that ηr(λ,ρ) = 0, can be a solution to (188) only in some subset R0 ⊂ R. Let us then assume

that 0< ηr(λ,ρ)< ηt and that (188) has a nontrivial and unique solution

ρ= (ρ1, . . . ,ρw,0, . . . ,0) , w = 1,2, . . . ,m (189)

for some λ ∈ R\R0. Since only w components of ρ are positive, it is sufficient to consider only w
equations

2λk

σ2
n + ρ2kλk

[

2ηt − ξ1
2

−
w∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)]

− ln 2

ξ−1
2

= 0. (190)

We observe that the existence of a unique solution (189) implies

m∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)

=
w∑

k=1

log2

(

1 +
ρ2kλk

σ2
n

)

= ηλ (191)

where 0< ηλ < ηt is some constant. Consequently,

λk

σ2
n + ρ2kλk

=
θR
σ2
n

, k = 1,2, . . . ,w (192)

where θR > 0 is some positive constant because the left-hand side of (192) is always positive. By rear-

ranging the terms in (192) and using (191), we obtain

qj = ρ2k = σ2
n

(
θ−1
R −λ−1

k

)

+
, k = 1, . . . ,m (193)

where w is a unique integer in {1,2, . . . ,m} such that λw > θR ≥ λw+1. The existence and uniqueness

of the solution (193) can be proved by repeating the steps of the proof of Lemma 1 in [6, Appendix C],

which are related to the existence and uniqueness of the solution (193) to the equation of the form (191).

The value of θR can be found by solving (190). In particular, by substituting (193) into (190), we

obtain
w∑

k=1

log2

(
λk

θR

)

− 2ηt − ξ1
2

= − σ2
n ln 2

2θRξ
−1
2

(194)

which after some additional algebra is equivalent to
[

σ2
n (ln2)

2

2θRξ
−1
2

]

︸ ︷︷ ︸

a

w

exp

[

σ2
n (ln2)

2

2θRξ
−1
2

]

︸ ︷︷ ︸

a

=

[

σ2
n (ln2)

2

2ξ−1
2

]w
2(2ηt−ξ1)/2

∏w
k=1λk

︸ ︷︷ ︸

b

. (195)

Equation (195), which has the form awea = b, can be transformed into an equation of the form ãeã = b̃,
whose solution is given by the LambertW function, i.e., ã=W (b̃) [7]. In particular, we use the following

change of variables ã= a/w and b̃= w
√
b/w to obtain ãeã = b̃. Consequently,

θR(w,λ) =
σ2
n (ln 2)

2

2wξ−1
2

{

W

[

σ2
n (ln 2)

2

2wξ−1
2

w

√

2(2ηt−ξ1)/2

∏w
k=1λk

]}−1

. (196)
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Furthermore, since b̃≥−1/e [7], we conclude that

ξ2 ≥ − 2we−1

σ2
n (ln 2)

2

w

√ ∏w
k=1λk

2(2ηt−ξ1)/2
. (197)

On the other hand, substituting (193) into (191) yields

0 <
∏w

k=1
λk < 2ηt (θR)

w . (198)

Since the inequalities (197) and (198) must be satisfied for any λ ∈ R, we conclude that ξ2 > 0 and

b̃ > 0. The condition b̃ > 0 implies that W (b̃)> 0 for all λ ∈ R, i.e., we use only the principal branch of

the Lambert W function [7].

A.3 Proof of Proposition 9

The target link spectral efficiency ηt can be achieved by transmitting in exactly w = 1,2, . . . ,m subchan-

nels, i.e., on the boundary of one of the regions Tw

Sw =
{

λ ∈ Tw :
∑w

k=1
log2

(
1 + qkλk/σ

2
n

)
= ηt

}

. (199)

By substituting (169) into (199), we obtain

Sw =
{

λ ∈ Tw :
∏w

k=1
λk = 2ηt (θT )

w
}

. (200)

Since the boundary S is union of Sw, we need to show that component functions ρk satisfy Weierstrass-

Erdmann conditions (167) and (168) for all possible values of w.

First, we observe that the variational integrand (166) does not depend on the first order derivatives ρ′k.
Consequently, the condition (167) is always satisfied. It is easily seen that (168) is satisfied if θR(w,λ) =
θT for all λ ∈ Sw. If λ ∈ Sw, then by substituting (200) and (170) into (172), we obtain

θR(w,λ) =
σ2
n (ln2)

2

2wξ−1
2

{

W

[

− ξ1 ln2

2w
exp

(

−ξ1 ln2

2w

)]}−1

=−σ2
nξ

−1
1 ξ2 ln2 = θT (201)

because W (zez) = z [7].

The proof of the second part of the proposition is based on the observation that the integrand L =
L(λ,q) given by (166) is pointwise convex in Rm

+ . Namely, we show that the Hessian matrix

H =













∂2L

∂q21

∂2L

∂q1∂q2

∂2L

∂q1∂q3
. . .

∂2L

∂q1∂qm
∂2L

∂q2∂q1

∂2L

∂q22

∂2L

∂q2∂q3
. . .

∂2L

∂q2∂qm
...

...
...

. . .
...

∂2L

∂qm∂q1

∂2L

∂qm∂q2

∂2L

∂qm∂q3
. . .

∂2L

∂q2m













(202)

is positive semidefinite, that is, the determinant of H is nonnegative.

If λ ∈R, then the partial derivatives are

∂2L

∂q2k
=

2λ2
k

(σ2
n + qkλk)

2 (ln 2)2

[

1 + ηt ln 2−
m∑

k=1

ln

(

1 +
qkλk

σ2
n

)

− ξ1
2
ln 2

]

p(λ) (203)
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and
∂2L

∂qi∂qj
=

2λiλj

(σ2
n + qiλi)

(
σ2
n + qjλj

)
(ln 2)2

p(λ) (204)

for all i, j, k = 1,2, . . . ,m and all q ∈ Rm
+ and λ ∈ R. To simplify the calculation of detH, we use the

following substitutions

ck =

√
2λk

(σ2
n + qkλk) ln 2

√

p(λ) (205)

and

d = 1 + ηt ln 2−
m∑

k=1

ln

(

1 +
qkλk

σ2
n

)

− ξ1
2
ln 2. (206)

Consequently, the Hessian matrix becomes

H =







c21d c1c2 c1c3 . . . c1cm
c2c1 c22d c2c3 . . . c2cm

...
...

...
. . .

...

cmc1 cmc2 cmc3 . . . c
2
md






. (207)

Since the terms ck, k = 1,2, . . . ,m are common terms both in the kth row and kth column, we obtain

detH = (c1c2 · · · cm)2 det






d 1 1 . . . 1
1 d 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . d




 = (c1c2 · · · cm)2 det

[
(d− 1) Im + eeT

]
(208)

where Im is an m×m identity matrix and e is the all-one vector, that is, e= [1 1 . . .1]T. By using matrix

determinant lemma [14, p. 420], we obtain

detH = (c1c2 · · · cm)2 (d− 1)(m−1) (d− 1 +m) > 0 (209)

because ξ1 < 0 and thus

d− 1 = ηt ln2−
m∑

k=1

ln

(

1+
qkλk

σ2
n

)

︸ ︷︷ ︸

≥0

−ξ1
2
ln 2 > 0. (210)

If λ ∈ T , then the partial derivatives are

∂2L

∂q2k
= − ξ1λ

2
k

(σ2
n + qkλk)

2 ln 2
p(λ) (211)

and
∂2L

∂qi∂qj
= 0 (212)

for all i, j,k = 1,2, . . . ,m and all q ∈ Rm
+ and λ ∈ T . The Hessian matrix H is a diagonal matrix, whose

determinant is

detH =
m∏

k=1

[

− ξ1λ
2
k

(σ2
n + qkλk)

2 ln 2
p(λ)

]

> 0 (213)

because ξ1 < 0.

From (209) and (213), we can conclude that the Hessian matrix H is actually a positive definite

matrix. Consequently, any q that satisfies Euler-Lagrange equations (165) is an absolute minimizer [13,

p. 238].
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A.4 Proof of Proposition 6

The proof of Proposition 6 essentially follows the same steps as the proof of Proposition 8 with target

link spectral efficiency ηt replaced by the target mean link spectral efficiency rav.

A.5 Proof of Proposition 5

If λ ∈R, then

L(λ,ρ) =
m∑

k=1

∫

R

[

ξ1 + ξ2ρ
2
k − log2

(

1 +
ρ2kλk

σ2
n

)]

p (λ) dλ. (214)

Consequently, the set of Euler-Lagrange equations (165) becomes

ρk

(
λk

σ2
n + ρ2kλk

− ξ2 ln2

)

= 0, k = 1,2, . . . ,m. (215)

It is easily seen that the choice

qk = ρ2k = σ2
n

(
θ−1
R −λ−1

k

)

+
, k = 1,2, . . . ,m (216)

where

θR = σ2
nξ2 ln 2 (217)

satisfies (215) for all λ ∈R.

On the other hand, if λ ∈ T , then

L(λ,ρ) =
m∑

k=1

∫

T

[

ξ3ρ
2
k − log2

(

1 +
ρ2kλk

σ2
n

)]

p (λ) dλ. (218)

Consequently, the set of Euler-Lagrange equations (165) becomes

ρk

(
λk

σ2
n + ρ2kλk

− ξ3 ln2

)

= 0, k = 1,2, . . . ,m. (219)

It is easily seen that the choice

qk = ρ2k = σ2
n

(
θ−1
T −λ−1

k

)

+
, k = 1,2, . . . ,m (220)

where

θT = σ2
nξ3 ln 2 (221)

satisfies (219) for all λ ∈ R. A trivial solution, ρ = 0 for all λ ∈ T , does not satisfy the second

Weierstrass-Erdmann condition (130) which implies that ρ 6= 0 on the boundary of T .

Let us assume that θT < 0, which implies that qk ≥ 0 if and only if λk < θT . Since λk > 0 by defini-

tion, we obtain ρk = 0 and ηr(λ,ρ) = 0 for all λ, which contradicts the assumption ηt > 0. Therefore,

we conclude that θT > 0.
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Symbols and abbreviations

CDI channel distribution information

CSI channel state information

FFT fast Fourier transform

IEEE Institute of Electrical and Electronics Engineers

IFFT inverse fast Fourier transform

OFDM orthogonal frequency-division multiplexing

QAM quadrature amplitude modulation

Qos quality of servise

SINR Signal-to-Noise-plus-Interference Ratio

TDD time division duplex

WiMAX Worldwide Interoperability for Microwave Access

WSSUS wide-sense stationary uncorrelated scattering

l−n (·) nth order lower partial moment

ε(·) outage probability

κ(·) reward-to-semivariablity ratio

ηr link spectral efficiency

ηt target link spectral efficiency

ξ Lagrange multiplier

≻ strict ordering relation

< weak ordering relation

∼ equivalence relation

◦ concatenation

¬ logical contradiction

∨ logical disjunction

⇒ logical implication

⇔ logical equivalence

⊆ inclusion relation

⊂ proper inclusion relation

Q set of rational numbers

R set of real numbers

R+ set of nonnegative real numbers

Rn n-dimensional Euclidean space

Rn
+ nonnegative orthant of n-dimensional Euclidean space

E[ · ] expectation operator

R(·) risk measure

u(·) elementary utility function

U(·) von Neumann-Morgenstern utility function

V (·) risk index

Var[ · ] variance operator

W (·) Lambert W function

Ac complement of set A
F algebra of sets

P set of probability measures

Pd set of one-point probability measures

Ps set of simple probability measures
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